當前位置: 首頁>>代碼示例>>Python>>正文


Python stats.linregress方法代碼示例

本文整理匯總了Python中scipy.stats.linregress方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.linregress方法的具體用法?Python stats.linregress怎麽用?Python stats.linregress使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats的用法示例。


在下文中一共展示了stats.linregress方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: correlation_plot

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import linregress [as 別名]
def correlation_plot(x, y,
                     save_path,
                     title,
                     xlabel, ylabel):
    plt.scatter(x, y)
    slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
    line_x = np.arange(x.min(), x.max())
    line_y = slope*line_x + intercept
    plt.plot(line_x, line_y,
             label='$%.2fx + %.2f$, $R^2=%.2f$' % (slope, intercept, r_value**2))
    plt.legend(loc='best')
    plt.title(title)
    plt.xlabel(xlabel)
    plt.ylabel(ylabel)
    plt.tight_layout()
    plt.savefig(save_path)
    plt.clf()  # clear figure
    plt.close() 
開發者ID:KarchinLab,項目名稱:2020plus,代碼行數:20,代碼來源:plot.py

示例2: fit

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import linregress [as 別名]
def fit(self, verbose=True):
        """
        fit exponential trying find annualized increase

        :param verbose: if True (default), print debug info of linear regression
        :return:
        """
        df = self.df
        slope_b, intercept_b, r_b, p_b, std_err_b = stats.linregress(
            df["date_count"], df["lnb"]
        )
        slope_e, intercept_e, r_e, p_e, std_err_e = stats.linregress(
            df["date_count"], df["lne"]
        )
        if verbose:
            print("B fit", slope_b, intercept_b, r_b, p_b, std_err_b)
            print("E fit", slope_e, intercept_e, r_e, p_e, std_err_e)
        self.slope_b = slope_b
        self.intercept_b = intercept_b
        self.slope_e = slope_e
        self.intercept_e = intercept_e 
開發者ID:refraction-ray,項目名稱:xalpha,代碼行數:23,代碼來源:toolbox.py

示例3: generate_ols_regression_pixel_list

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import linregress [as 別名]
def generate_ols_regression_pixel_list(candidate_pifs, reference_pifs):
    ''' Performs PCA analysis on the valid pixels and filters according
    to the distance from the principle eigenvector.

    :param list candidate_pifs: A list of candidate PIF data
    :param list reference_pifs: A list of coincident reference PIF data

    :returns: A LinearTransformation object (gain and offset)
    '''
    logging.info('Transformation: Calculating ordinary least squares '
                 'regression transformations')

    gain, offset, r_value, p_value, std_err = linregress(
        candidate_pifs, reference_pifs)
    logging.debug(
        'Fit statistics: r_value = {}, p_value = {}, std_err = {}'.format(
            r_value, p_value, std_err))
    logging.info("Transformation: gain {}, offset {}".format(gain, offset))

    return LinearTransformation(gain, offset) 
開發者ID:planetlabs,項目名稱:radiometric_normalization,代碼行數:22,代碼來源:transformation.py

示例4: produce_the_kde_plot

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import linregress [as 別名]
def produce_the_kde_plot(cycles, color, save_name):
    ground_truth_and_suggested = [(eval_code.get_best_qed_from_smiles_bag(elem['ground_truth_product']),
                                   eval_code.get_best_qed_from_smiles_bag(elem['suggested_product']))
                                         for elem in cycles]
    len_out = len(ground_truth_and_suggested)
    ground_truth_and_suggested = [elem for elem in ground_truth_and_suggested if elem[1] != -np.inf]
    len_filter = len(ground_truth_and_suggested)
    num_discarding = len_out - len_filter
    if num_discarding:
        warnings.warn(f"Discarding {num_discarding} our of {len_out} as no successful reconstruction")
    ground_truth_and_suggested = np.array(ground_truth_and_suggested)
    ground_truth_product_qed = ground_truth_and_suggested[:, 0]
    suggested_product_qed = ground_truth_and_suggested[:, 1]

    g = sns.jointplot(x=ground_truth_product_qed, y=suggested_product_qed, kind="kde", color=color,
                      )
    g.set_axis_labels("product's QED", "reconstructed product's QED", fontsize=16)
    rsquare = lambda a, b: stats.pearsonr(ground_truth_product_qed, suggested_product_qed)[0] ** 2
    g = g.annotate(rsquare, template="{stat}: {val:.2f}",
                   stat="$R^2$", loc="upper left", fontsize=12)
    print(f"Rsquare: {stats.pearsonr(ground_truth_product_qed, suggested_product_qed)[0] ** 2}")
    print(f"scipystats: {stats.linregress(ground_truth_product_qed, suggested_product_qed)}")
    plt.tight_layout()
    plt.savefig(f"{save_name}.pdf") 
開發者ID:john-bradshaw,項目名稱:molecule-chef,代碼行數:26,代碼來源:create_retrosynthesis_plots.py

示例5: test_nist_norris

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import linregress [as 別名]
def test_nist_norris(self):
        x = [0.2, 337.4, 118.2, 884.6, 10.1, 226.5, 666.3, 996.3, 448.6, 777.0,
             558.2, 0.4, 0.6, 775.5, 666.9, 338.0, 447.5, 11.6, 556.0, 228.1,
             995.8, 887.6, 120.2, 0.3, 0.3, 556.8, 339.1, 887.2, 999.0, 779.0,
             11.1, 118.3, 229.2, 669.1, 448.9, 0.5]

        y = [0.1, 338.8, 118.1, 888.0, 9.2, 228.1, 668.5, 998.5, 449.1, 778.9,
             559.2, 0.3, 0.1, 778.1, 668.8, 339.3, 448.9, 10.8, 557.7, 228.3,
             998.0, 888.8, 119.6, 0.3, 0.6, 557.6, 339.3, 888.0, 998.5, 778.9,
             10.2, 117.6, 228.9, 668.4, 449.2, 0.2]

        # Expected values
        exp_slope = 1.00211681802045
        exp_intercept = -0.262323073774029
        exp_rvalue = 0.999993745883712

        actual = stats.linregress(x, y)

        assert_almost_equal(actual.slope, exp_slope)
        assert_almost_equal(actual.intercept, exp_intercept)
        assert_almost_equal(actual.rvalue, exp_rvalue, decimal=5) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:23,代碼來源:test_stats.py

示例6: calc_beta

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import linregress [as 別名]
def calc_beta(stock, benchmark, price_history):
    """
    Calculate beta amounts for each security
    """
    stock_prices = price_history[stock].pct_change().dropna()
    bench_prices = price_history[benchmark].pct_change().dropna()
    aligned_prices = bench_prices.align(stock_prices, join='inner')
    bench_prices = aligned_prices[0]
    stock_prices = aligned_prices[1]
    bench_prices = np.array(bench_prices.values)
    stock_prices = np.array(stock_prices.values)
    bench_prices = np.reshape(bench_prices, len(bench_prices))
    stock_prices = np.reshape(stock_prices, len(stock_prices))
    if len(stock_prices) == 0:
        return None
    # market_beta, benchmark_beta = np.polyfit(bench_prices, stock_prices, 1)
    slope, intercept, r_value, p_value, stderr = stats.linregress(bench_prices, stock_prices)
    return slope 
開發者ID:santiment,項目名稱:sanpy,代碼行數:20,代碼來源:event_study.py

示例7: calc_beta_testing

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import linregress [as 別名]
def calc_beta_testing(stock, benchmark, price_history):
    """
    Calculate beta and alpha amounts for each security
    """
    # stock_prices = price_history[stock].pct_change().dropna()
    stock_prices = np.log(1+price_history[stock].pct_change().dropna())
    # bench_prices = price_history[benchmark].pct_change().dropna()
    bench_prices = np.log(1+price_history[benchmark].pct_change().dropna())
    aligned_prices = bench_prices.align(stock_prices, join='inner')
    bench_prices = aligned_prices[0]
    stock_prices = aligned_prices[1]
    bench_prices = np.array(bench_prices.values)
    stock_prices = np.array(stock_prices.values)
    bench_prices = np.reshape(bench_prices, len(bench_prices))
    stock_prices = np.reshape(stock_prices, len(stock_prices))

    if len(stock_prices) == 0:
        return None
    # market_beta, benchmark_beta = np.polyfit(bench_prices, stock_prices, 1)
    slope, intercept, r_value, p_value, stderr = stats.linregress(bench_prices, stock_prices)
    return slope, intercept 
開發者ID:santiment,項目名稱:sanpy,代碼行數:23,代碼來源:event_study.py

示例8: fit

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import linregress [as 別名]
def fit(self, magnitude, time):
        regression_slope = stats.linregress(time, magnitude)[0]
        return {"LinearTrend": regression_slope} 
開發者ID:quatrope,項目名稱:feets,代碼行數:5,代碼來源:ext_linear_trend.py

示例9: _assert_linreg

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import linregress [as 別名]
def _assert_linreg(self, nanx, nany, x, y):
        '''nanx, nany: values for _nanlinreg. x, y: values for scipy linreg.
        Asserts the results are the same'''
        l_1 = linregress(np.asarray(x), np.asarray(y))
        l_2 = _nanlinregress(np.asarray(nanx), np.asarray(nany))

        if np.isnan(l_1.slope):
            self.assertTrue(np.isnan(l_2.slope))
        else:
            self.assertEqual(l_1.slope, l_2.slope)

        if np.isnan(l_1.intercept):
            self.assertTrue(np.isnan(l_2.intercept))
        else:
            self.assertEqual(l_1.intercept, l_2.intercept) 
開發者ID:GEMScienceTools,項目名稱:gmpe-smtk,代碼行數:17,代碼來源:residual_plots_test.py

示例10: _nanlinregress

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import linregress [as 別名]
def _nanlinregress(x, y):
    '''Calls scipy linregress only on finite numbers of x and y'''
    finite = np.isfinite(x) & np.isfinite(y)
    if not finite.any():
        # empty arrays passed to linreg raise ValueError:
        # force returning an object with nans:
        return linregress([np.nan], [np.nan])
    return linregress(x[finite], y[finite]) 
開發者ID:GEMScienceTools,項目名稱:gmpe-smtk,代碼行數:10,代碼來源:residual_plots.py

示例11: linregress_residuals

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import linregress [as 別名]
def linregress_residuals(xdata,ydata):
    """
    This function performs a linear regression and then gets the residuals
    
    Args:
        xdata (array-like): The x data
        ydata (array-like): The y data
        
    Returns:
        residuals: the residuals of the regression
        slope: the slope of regression line
        intercept: intercept of the regression line
        rvalue: correlation coeffficient
        pvalue: two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero.
        stderr: standard error of the estimated gradient
    
    Author: SMM
    """
    
    from scipy import stats
    
    # Get the regression
    (m,b,r,pvalue,stderr)=stats.linregress(xdata,ydata)   
    #print("In regress1, m is: "+str(m))    
    # get the residuals
    residuals = np.copy(xdata)
    for idx,x in enumerate(xdata):
        yfit = m*x+b
        residuals[idx] = yfit-ydata[idx]
        
    return (residuals,m,b,r,pvalue,stderr) 
開發者ID:LSDtopotools,項目名稱:LSDMappingTools,代碼行數:33,代碼來源:statsutilities.py

示例12: remove_outlying_residuals

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import linregress [as 別名]
def remove_outlying_residuals(xdata,ydata,residuals):
    """
    This function removes data with outying residuals
    
    Args:
        xdata (array-like): The x data
        ydata (array-like): The y data    
        residuals: The residuals

        
    Returns:
        new_x: data with outlier removed
        new_y: data with outliers removed
        is_outlier_vec: A vec of bools denoiting if they are outliers
        m: the slope of the regression
        b: the intercept of the regression
            
    Author: SMM
    """
    from scipy import stats

    # get the outliers
    is_outlier_vec = is_outlier(residuals, thresh=3.5)
    
    # now remove the outliers from the dataset
    new_x = []
    new_y = []
    for idx,x in enumerate(xdata):
        if not is_outlier_vec[idx]:
            new_x.append(xdata[idx])
            new_y.append(ydata[idx])
  
    NX = np.asarray(new_x)
    NY = np.asarray(new_y)
    
    # now get the new regression
    (m,b,r,pvalue,stderr)=stats.linregress(NX,NY)

    return (NX,NY, is_outlier_vec, m,b) 
開發者ID:LSDtopotools,項目名稱:LSDMappingTools,代碼行數:41,代碼來源:statsutilities.py

示例13: _completion_est

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import linregress [as 別名]
def _completion_est(self):
        if self._extent is None:
            return 'unknown'

        history = numpy.array(self._progress_history)
        if not len(history):
            return 'unknown'
        history[:,1] -= self._extent
        (_slope, intercept, _r, _p, _stderr) = linregress(history[:,1], history[:,0])
        if not numpy.isfinite(intercept):
            return 'unknown'
        else:
            total_seconds_remaining = intercept - time.time()
            
            if total_seconds_remaining < 60:
                return 'less than 1 minute'
            
            # 1 minute or more remains
            minutes = total_seconds_remaining / 60
            if minutes < 60:
                minutes = int(round(minutes))
                return 'about {:d} {}'.format(minutes, 'minutes' if minutes > 1 else 'minute')
            
            # 1 hour or more remains
            hours, minutes = divmod(minutes, 60)
            days, hours = divmod(hours, 24)
            days = int(days)
            hours = int(round(hours))
            minutes = int(round(minutes))
            if days > 0:
                return 'about {:d} {}, {:d} {}'.format(days, 'days' if days > 1 else 'day', 
                                                       hours, 'hours' if hours > 1 else 'hour')
            else:
                return 'about {:d} {}, {:d} {}'.format(hours, 'hours' if hours > 1 else 'hour',
                                                       minutes, 'minutes' if minutes > 1 else 'minute') 
開發者ID:westpa,項目名稱:westpa,代碼行數:37,代碼來源:progress.py

示例14: linear_pred

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import linregress [as 別名]
def linear_pred(y):
    if len(y)==1:
        return y
    else:
        x = np.array(range(0,len(y)))
        slope, intercept, _, _, _ = stats.linregress(x,y)
        return slope*len(y)+intercept 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:9,代碼來源:track_lib.py

示例15: linear_pred_v2

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import linregress [as 別名]
def linear_pred_v2(tr_t, tr_y, ts_t):
    ts_y = np.ones(len(ts_t))
    if len(tr_t)==1:
        ts_y = ts_y*tr_y
    else:
        slope, intercept, _, _, _ = stats.linregress(tr_t,tr_y)
        ts_y = slope*ts_t+intercept
    return ts_y 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:10,代碼來源:track_lib.py


注:本文中的scipy.stats.linregress方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。