本文整理匯總了Python中scipy.stats.laplace方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.laplace方法的具體用法?Python stats.laplace怎麽用?Python stats.laplace使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats
的用法示例。
在下文中一共展示了stats.laplace方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testLaplaceLogPDF
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import laplace [as 別名]
def testLaplaceLogPDF(self):
with self.test_session():
batch_size = 6
loc = tf.constant([2.0] * batch_size)
scale = tf.constant([3.0] * batch_size)
loc_v = 2.0
scale_v = 3.0
x = np.array([2.5, 2.5, 4.0, 0.1, 1.0, 2.0], dtype=np.float32)
laplace = tf.contrib.distributions.Laplace(loc=loc, scale=scale)
expected_log_pdf = stats.laplace.logpdf(x, loc_v, scale=scale_v)
log_pdf = laplace.log_pdf(x)
self.assertEqual(log_pdf.get_shape(), (6,))
self.assertAllClose(log_pdf.eval(), expected_log_pdf)
pdf = laplace.pdf(x)
self.assertEqual(pdf.get_shape(), (6,))
self.assertAllClose(pdf.eval(), np.exp(expected_log_pdf))
示例2: testLaplaceLogPDFMultidimensional
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import laplace [as 別名]
def testLaplaceLogPDFMultidimensional(self):
with self.test_session():
batch_size = 6
loc = tf.constant([[2.0, 4.0]] * batch_size)
scale = tf.constant([[3.0, 4.0]] * batch_size)
loc_v = np.array([2.0, 4.0])
scale_v = np.array([3.0, 4.0])
x = np.array([[2.5, 2.5, 4.0, 0.1, 1.0, 2.0]], dtype=np.float32).T
laplace = tf.contrib.distributions.Laplace(loc=loc, scale=scale)
expected_log_pdf = stats.laplace.logpdf(x, loc_v, scale=scale_v)
log_pdf = laplace.log_pdf(x)
log_pdf_values = log_pdf.eval()
self.assertEqual(log_pdf.get_shape(), (6, 2))
self.assertAllClose(log_pdf_values, expected_log_pdf)
pdf = laplace.pdf(x)
pdf_values = pdf.eval()
self.assertEqual(pdf.get_shape(), (6, 2))
self.assertAllClose(pdf_values, np.exp(expected_log_pdf))
示例3: testLaplaceLogPDFMultidimensionalBroadcasting
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import laplace [as 別名]
def testLaplaceLogPDFMultidimensionalBroadcasting(self):
with self.test_session():
batch_size = 6
loc = tf.constant([[2.0, 4.0]] * batch_size)
scale = tf.constant(3.0)
loc_v = np.array([2.0, 4.0])
scale_v = 3.0
x = np.array([[2.5, 2.5, 4.0, 0.1, 1.0, 2.0]], dtype=np.float32).T
laplace = tf.contrib.distributions.Laplace(loc=loc, scale=scale)
expected_log_pdf = stats.laplace.logpdf(x, loc_v, scale=scale_v)
log_pdf = laplace.log_pdf(x)
log_pdf_values = log_pdf.eval()
self.assertEqual(log_pdf.get_shape(), (6, 2))
self.assertAllClose(log_pdf_values, expected_log_pdf)
pdf = laplace.pdf(x)
pdf_values = pdf.eval()
self.assertEqual(pdf.get_shape(), (6, 2))
self.assertAllClose(pdf_values, np.exp(expected_log_pdf))
示例4: testLaplaceSample
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import laplace [as 別名]
def testLaplaceSample(self):
with tf.Session():
loc_v = 4.0
scale_v = 3.0
loc = tf.constant(loc_v)
scale = tf.constant(scale_v)
n = 100000
laplace = tf.contrib.distributions.Laplace(loc=loc, scale=scale)
samples = laplace.sample(n, seed=137)
sample_values = samples.eval()
self.assertEqual(samples.get_shape(), (n,))
self.assertEqual(sample_values.shape, (n,))
self.assertAllClose(sample_values.mean(),
stats.laplace.mean(loc_v, scale=scale_v),
rtol=0.05, atol=0.)
self.assertAllClose(sample_values.var(),
stats.laplace.var(loc_v, scale=scale_v),
rtol=0.05, atol=0.)
self.assertTrue(self._kstest(loc_v, scale_v, sample_values))
示例5: testLaplacePdfOfSampleMultiDims
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import laplace [as 別名]
def testLaplacePdfOfSampleMultiDims(self):
with tf.Session() as sess:
laplace = tf.contrib.distributions.Laplace(
loc=[7., 11.], scale=[[5.], [6.]])
num = 50000
samples = laplace.sample(num, seed=137)
pdfs = laplace.pdf(samples)
sample_vals, pdf_vals = sess.run([samples, pdfs])
self.assertEqual(samples.get_shape(), (num, 2, 2))
self.assertEqual(pdfs.get_shape(), (num, 2, 2))
self.assertAllClose(
stats.laplace.mean([[7., 11.], [7., 11.]],
scale=np.array([[5., 5.], [6., 6.]])),
sample_vals.mean(axis=0),
rtol=0.05, atol=0.)
self.assertAllClose(
stats.laplace.var([[7., 11.], [7., 11.]],
scale=np.array([[5., 5.], [6., 6.]])),
sample_vals.var(axis=0),
rtol=0.05, atol=0.)
self._assertIntegral(sample_vals[:, 0, 0], pdf_vals[:, 0, 0], err=0.02)
self._assertIntegral(sample_vals[:, 0, 1], pdf_vals[:, 0, 1], err=0.02)
self._assertIntegral(sample_vals[:, 1, 0], pdf_vals[:, 1, 0], err=0.02)
self._assertIntegral(sample_vals[:, 1, 1], pdf_vals[:, 1, 1], err=0.02)
示例6: __init__
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import laplace [as 別名]
def __init__(self, loc, scale):
loc.shape == scale.shape or _raise(ValueError())
#
self._loc = loc
self._scale = scale
# expose methods from laplace object
_laplace = laplace(loc=self._loc,scale=self._scale)
self.rvs = _laplace.rvs
self.pdf = _laplace.pdf
self.logpdf = _laplace.logpdf
self.cdf = _laplace.cdf
self.logcdf = _laplace.logcdf
self.sf = _laplace.sf
self.logsf = _laplace.logsf
self.ppf = _laplace.ppf
self.isf = _laplace.isf
self.moment = _laplace.moment
self.stats = _laplace.stats
self.entropy = _laplace.entropy
self.expect = _laplace.expect
self.median = _laplace.median
self.mean = _laplace.mean
self.var = _laplace.var
self.std = _laplace.std
self.interval = _laplace.interval
示例7: test_loglaplace
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import laplace [as 別名]
def test_loglaplace():
#if x is laplace then y = exp(x) is loglaplace
#parameters are tricky
#the stats.loglaplace parameter is the inverse scale of x
loglaplaceexpg = ExpTransf_gen(stats.laplace)
cdfst = stats.loglaplace.cdf(3,3)
#0.98148148148148151
#the parameters are shape, loc and scale of underlying laplace
cdftr = loglaplaceexpg._cdf(3,0,1./3)
assert_almost_equal(cdfst, cdftr, 14)
示例8: setUp_configure
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import laplace [as 別名]
def setUp_configure(self):
from scipy import stats
self.dist = distributions.Laplace
self.scipy_dist = stats.laplace
self.test_targets = set([
'batch_shape', 'cdf', 'entropy', 'event_shape', 'icdf', 'log_prob',
'mean', 'prob', 'sample', 'stddev', 'support', 'variance'])
loc = utils.force_array(
numpy.random.uniform(-1, 1, self.shape).astype(numpy.float32))
scale = utils.force_array(numpy.exp(
numpy.random.uniform(-1, 1, self.shape)).astype(numpy.float32))
self.params = {'loc': loc, 'scale': scale}
self.scipy_params = {'loc': loc, 'scale': scale}
示例9: check_backward
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import laplace [as 別名]
def check_backward(self, x_data, y_grad):
gradient_check.check_backward(
distributions.laplace._laplace_cdf,
x_data, y_grad, **self.backward_options)
示例10: check_forward
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import laplace [as 別名]
def check_forward(self, x_data):
y = distributions.laplace._laplace_icdf(x_data)
cdf = distributions.laplace._laplace_cdf(y)
testing.assert_allclose(cdf.array, x_data)
示例11: testLaplaceShape
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import laplace [as 別名]
def testLaplaceShape(self):
with self.test_session():
loc = tf.constant([3.0] * 5)
scale = tf.constant(11.0)
laplace = tf.contrib.distributions.Laplace(loc=loc, scale=scale)
self.assertEqual(laplace.batch_shape().eval(), (5,))
self.assertEqual(laplace.get_batch_shape(), tf.TensorShape([5]))
self.assertAllEqual(laplace.event_shape().eval(), [])
self.assertEqual(laplace.get_event_shape(), tf.TensorShape([]))
示例12: testLaplaceCDF
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import laplace [as 別名]
def testLaplaceCDF(self):
with self.test_session():
batch_size = 6
loc = tf.constant([2.0] * batch_size)
scale = tf.constant([3.0] * batch_size)
loc_v = 2.0
scale_v = 3.0
x = np.array([2.5, 2.5, 4.0, 0.1, 1.0, 2.0], dtype=np.float32)
laplace = tf.contrib.distributions.Laplace(loc=loc, scale=scale)
expected_cdf = stats.laplace.cdf(x, loc_v, scale=scale_v)
cdf = laplace.cdf(x)
self.assertEqual(cdf.get_shape(), (6,))
self.assertAllClose(cdf.eval(), expected_cdf)
示例13: testLaplaceMode
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import laplace [as 別名]
def testLaplaceMode(self):
with self.test_session():
loc_v = np.array([0.5, 3.0, 2.5])
scale_v = np.array([1.0, 4.0, 5.0])
laplace = tf.contrib.distributions.Laplace(loc=loc_v, scale=scale_v)
self.assertEqual(laplace.mode().get_shape(), (3,))
self.assertAllClose(laplace.mode().eval(), loc_v)
示例14: testLaplaceVariance
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import laplace [as 別名]
def testLaplaceVariance(self):
with self.test_session():
loc_v = np.array([1.0, 3.0, 2.5])
scale_v = np.array([1.0, 4.0, 5.0])
laplace = tf.contrib.distributions.Laplace(loc=loc_v, scale=scale_v)
expected_variances = stats.laplace.var(loc_v, scale=scale_v)
self.assertEqual(laplace.variance().get_shape(), (3,))
self.assertAllClose(laplace.variance().eval(), expected_variances)
示例15: testLaplaceStd
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import laplace [as 別名]
def testLaplaceStd(self):
with self.test_session():
loc_v = np.array([1.0, 3.0, 2.5])
scale_v = np.array([1.0, 4.0, 5.0])
laplace = tf.contrib.distributions.Laplace(loc=loc_v, scale=scale_v)
expected_std = stats.laplace.std(loc_v, scale=scale_v)
self.assertEqual(laplace.std().get_shape(), (3,))
self.assertAllClose(laplace.std().eval(), expected_std)