本文整理匯總了Python中scipy.stats.kurtosis方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.kurtosis方法的具體用法?Python stats.kurtosis怎麽用?Python stats.kurtosis使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats
的用法示例。
在下文中一共展示了stats.kurtosis方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_kurt
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kurtosis [as 別名]
def test_kurt(self, float_frame_with_na, float_frame, float_string_frame):
from scipy.stats import kurtosis
def alt(x):
if len(x) < 4:
return np.nan
return kurtosis(x, bias=False)
assert_stat_op_calc('kurt', alt, float_frame_with_na)
assert_stat_op_api('kurt', float_frame, float_string_frame)
index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]],
codes=[[0, 0, 0, 0, 0, 0],
[0, 1, 2, 0, 1, 2],
[0, 1, 0, 1, 0, 1]])
df = DataFrame(np.random.randn(6, 3), index=index)
kurt = df.kurt()
kurt2 = df.kurt(level=0).xs('bar')
tm.assert_series_equal(kurt, kurt2, check_names=False)
assert kurt.name is None
assert kurt2.name == 'bar'
示例2: columns
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kurtosis [as 別名]
def columns():
feature_sizes = dict(chroma_stft=12, chroma_cqt=12, chroma_cens=12,
tonnetz=6, mfcc=20, rmse=1, zcr=1,
spectral_centroid=1, spectral_bandwidth=1,
spectral_contrast=7, spectral_rolloff=1)
moments = ('mean', 'std', 'skew', 'kurtosis', 'median', 'min', 'max')
columns = []
for name, size in feature_sizes.items():
for moment in moments:
it = ((name, moment, '{:02d}'.format(i+1)) for i in range(size))
columns.extend(it)
names = ('feature', 'statistics', 'number')
columns = pd.MultiIndex.from_tuples(columns, names=names)
# More efficient to slice if indexes are sorted.
return columns.sort_values()
示例3: nct_kurt_bug
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kurtosis [as 別名]
def nct_kurt_bug():
'''test for incorrect kurtosis of nct
D. Hogben, R. S. Pinkham, M. B. Wilk: The Moments of the Non-Central
t-DistributionAuthor(s): Biometrika, Vol. 48, No. 3/4 (Dec., 1961),
pp. 465-468
'''
from numpy.testing import assert_almost_equal
mvsk_10_1 = (1.08372, 1.325546, 0.39993, 1.2499424941142943)
assert_almost_equal(stats.nct.stats(10, 1, moments='mvsk'), mvsk_10_1, decimal=6)
c1=np.array([1.08372])
c2=np.array([.0755460, 1.25000])
c3 = np.array([.0297802, .580566])
c4 = np.array([0.0425458, 1.17491, 6.25])
#calculation for df=10, for arbitrary nc
nc = 1
mc1 = c1.item()
mc2 = (c2*nc**np.array([2,0])).sum()
mc3 = (c3*nc**np.array([3,1])).sum()
mc4 = c4=np.array([0.0425458, 1.17491, 6.25])
mvsk_nc = mc2mvsk((mc1,mc2,mc3,mc4))
示例4: _set_start_params
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kurtosis [as 別名]
def _set_start_params(self, start_params=None, use_kurtosis=False):
if start_params is not None:
self.start_params = start_params
else:
from statsmodels.regression.linear_model import OLS
res_ols = OLS(self.endog, self.exog).fit()
start_params = 0.1*np.ones(self.k_params)
start_params[:self.k_vars] = res_ols.params
if self.fix_df is False:
if use_kurtosis:
kurt = stats.kurtosis(res_ols.resid)
df = 6./kurt + 4
else:
df = 5
start_params[-2] = df
#TODO adjust scale for df
start_params[-1] = np.sqrt(res_ols.scale)
self.start_params = start_params
示例5: test_kurt
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kurtosis [as 別名]
def test_kurt(self):
from scipy.stats import kurtosis
alt = lambda x: kurtosis(x, bias=False)
self._check_stat_op('kurt', alt)
index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]],
labels=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2],
[0, 1, 0, 1, 0, 1]])
s = Series(np.random.randn(6), index=index)
tm.assert_almost_equal(s.kurt(), s.kurt(level=0)['bar'])
# test corner cases, kurt() returns NaN unless there's at least 4
# values
min_N = 4
for i in range(1, min_N + 1):
s = Series(np.ones(i))
df = DataFrame(np.ones((i, i)))
if i < min_N:
assert np.isnan(s.kurt())
assert np.isnan(df.kurt()).all()
else:
assert 0 == s.kurt()
assert (df.kurt() == 0).all()
示例6: test_kurt
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kurtosis [as 別名]
def test_kurt(self):
from scipy.stats import kurtosis
def alt(x):
if len(x) < 4:
return np.nan
return kurtosis(x, bias=False)
self._check_stat_op('kurt', alt)
index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]],
labels=[[0, 0, 0, 0, 0, 0],
[0, 1, 2, 0, 1, 2],
[0, 1, 0, 1, 0, 1]])
df = DataFrame(np.random.randn(6, 3), index=index)
kurt = df.kurt()
kurt2 = df.kurt(level=0).xs('bar')
tm.assert_series_equal(kurt, kurt2, check_names=False)
assert kurt.name is None
assert kurt2.name == 'bar'
示例7: get_stat_funs
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kurtosis [as 別名]
def get_stat_funs():
"""
Previous version uses lambdas.
"""
stat_funs = []
stats = [len, np.min, np.max, np.median, np.std, skew, kurtosis] + 19 * [np.percentile]
stats_kwargs = [{} for i in range(7)] + [{'q': i} for i in np.linspace(0.05, 0.95, 19)]
for stat, stat_kwargs in zip(stats, stats_kwargs):
stat_funs.append(_StatFunAdaptor(stat,**stat_kwargs))
stat_funs.append(_StatFunAdaptor(stat, np.diff, **stat_kwargs))
stat_funs.append(_StatFunAdaptor(stat, diff2, **stat_kwargs))
stat_funs.append(_StatFunAdaptor(stat, np.unique, **stat_kwargs))
stat_funs.append(_StatFunAdaptor(stat, np.unique, np.diff, **stat_kwargs))
stat_funs.append(_StatFunAdaptor(stat, np.unique, diff2, **stat_kwargs))
return stat_funs
示例8: test_kurtosis
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kurtosis [as 別名]
def test_kurtosis(self):
# sum((testcase-mean(testcase,axis=0))**4,axis=0)/((sqrt(var(testcase)*3/4))**4)/4
# sum((test2-mean(testmathworks,axis=0))**4,axis=0)/((sqrt(var(testmathworks)*4/5))**4)/5
# Set flags for axis = 0 and
# fisher=0 (Pearson's defn of kurtosis for compatiability with Matlab)
y = stats.kurtosis(self.testmathworks,0,fisher=0,bias=1)
assert_approx_equal(y, 2.1658856802973,10)
# Note that MATLAB has confusing docs for the following case
# kurtosis(x,0) gives an unbiased estimate of Pearson's skewness
# kurtosis(x) gives a biased estimate of Fisher's skewness (Pearson-3)
# The MATLAB docs imply that both should give Fisher's
y = stats.kurtosis(self.testmathworks,fisher=0,bias=0)
assert_approx_equal(y, 3.663542721189047,10)
y = stats.kurtosis(self.testcase,0,0)
assert_approx_equal(y,1.64)
示例9: plot_information_table
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kurtosis [as 別名]
def plot_information_table(ic_data):
"""
IC 統計量
"""
ic_summary_table = pd.DataFrame()
ic_summary_table["IC Mean"] = ic_data.mean()
ic_summary_table["IC std."] = ic_data.std()
ic_summary_table["Risk-Adjusted IC (IR)"] = ic_data.mean() / ic_data.std()
t_stat, p_value = stats.ttest_1samp(ic_data, 0)
ic_summary_table["t-stat (IC)"] = t_stat
ic_summary_table["p-value (IC)"] = p_value
ic_summary_table["IC Skew"] = stats.skew(ic_data)
ic_summary_table["IC Kurtosis"] = stats.kurtosis(ic_data)
print("Information Analysis")
plotting_utils.print_table(ic_summary_table.apply(lambda x: x.round(3)).T)
示例10: compute_kurtosis
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kurtosis [as 別名]
def compute_kurtosis(data):
"""Kurtosis of the data (per channel).
Parameters
----------
data : ndarray, shape (n_channels, n_times)
Returns
-------
output : ndarray, shape (n_channels,)
Notes
-----
Alias of the feature function: **kurtosis**
"""
ndim = data.ndim
return stats.kurtosis(data, axis=ndim - 1, fisher=False)
示例11: test_describe_axis_none
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kurtosis [as 別名]
def test_describe_axis_none(self):
x = np.vstack((np.ones((3, 4)), 2 * np.ones((2, 4))))
# expected values
e_nobs, e_minmax = (20, (1.0, 2.0))
e_mean = 1.3999999999999999
e_var = 0.25263157894736848
e_skew = 0.4082482904638634
e_kurt = -1.8333333333333333
# actual values
a = stats.describe(x, axis=None)
assert_equal(a.nobs, e_nobs)
assert_almost_equal(a.minmax, e_minmax)
assert_almost_equal(a.mean, e_mean)
assert_almost_equal(a.variance, e_var)
assert_array_almost_equal(a.skewness, e_skew, decimal=13)
assert_array_almost_equal(a.kurtosis, e_kurt, decimal=13)
示例12: test_tukeylambda_stats_ticket_1545
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kurtosis [as 別名]
def test_tukeylambda_stats_ticket_1545():
# Some test for the variance and kurtosis of the Tukey Lambda distr.
# See test_tukeylamdba_stats.py for more tests.
mv = stats.tukeylambda.stats(0, moments='mvsk')
# Known exact values:
expected = [0, np.pi**2/3, 0, 1.2]
assert_almost_equal(mv, expected, decimal=10)
mv = stats.tukeylambda.stats(3.13, moments='mvsk')
# 'expected' computed with mpmath.
expected = [0, 0.0269220858861465102, 0, -0.898062386219224104]
assert_almost_equal(mv, expected, decimal=10)
mv = stats.tukeylambda.stats(0.14, moments='mvsk')
# 'expected' computed with mpmath.
expected = [0, 2.11029702221450250, 0, -0.02708377353223019456]
assert_almost_equal(mv, expected, decimal=10)
示例13: test_sparse_grid_moments
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kurtosis [as 別名]
def test_sparse_grid_moments(self):
mu = 1
sigma = 2
variance = sigma**2
x1 = Parameter(distribution="Gaussian", shape_parameter_A=mu, shape_parameter_B=variance, order=6)
x2 = Parameter(distribution="Gaussian", shape_parameter_A=mu, shape_parameter_B=variance, order=6)
del variance
parameters = [x1, x2]
parameters = [x1, x2]
basis = Basis('sparse-grid', level=5, growth_rule='linear')
uqProblem = Poly(parameters, basis, method='numerical-integration')
uqProblem.set_model(rosenbrock_fun)
mean, variance = uqProblem.get_mean_and_variance()
skewness, kurtosis = uqProblem.get_skewness_and_kurtosis()
large_number = 2000000
s = sigma * np.random.randn(large_number,2) + mu
model_evals = evaluate_model(s, rosenbrock_fun)
mean_mc = np.mean(model_evals)
variance_mc = np.var(model_evals)
skewness_mc = skew(model_evals)
np.testing.assert_array_less(np.abs(mean-mean_mc)/mean * 100.0, 1.0)
np.testing.assert_array_less(np.abs(variance-variance_mc)/variance * 100.0, 5.0)
np.testing.assert_array_less(np.abs(skewness-skewness_mc)/skewness * 100.0, 5.0)
示例14: test_parameter_mc_least_squares_moments
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kurtosis [as 別名]
def test_parameter_mc_least_squares_moments(self):
x1 = Parameter(distribution='uniform',lower =0.0, upper=1.0, order=7)
x2 = Parameter(distribution='Beta',lower =0.0, upper=1.0, shape_parameter_A = 1.6, shape_parameter_B=3.2 , order=7)
myparameters = [x1, x2]
mybasis = Basis('tensor-grid')
mypoly = Poly(myparameters, mybasis, method='numerical-integration')
mypoly.set_model(rosenbrock_fun)
mean, variance = mypoly.get_mean_and_variance()
skewness, kurtosis = mypoly.get_skewness_and_kurtosis()
large_number = 3000000
s = np.random.rand(large_number, 2)
x1_samples = x1.get_icdf(s[:,0])
x2_samples = x2.get_icdf(s[:,1])
s = np.vstack([x1_samples, x2_samples]).T
model_evals = evaluate_model(s, rosenbrock_fun)
mean_mc = np.mean(model_evals)
variance_mc = np.var(model_evals)
skewness_mc = skew(model_evals)
np.testing.assert_array_less(np.abs(mean-mean_mc)/mean * 100.0, 1.0)
np.testing.assert_array_less(np.abs(variance-variance_mc)/variance * 100.0, 5.0)
np.testing.assert_array_less(np.abs(skewness-skewness_mc)/skewness * 100.0, 5.0)
示例15: test__rs
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kurtosis [as 別名]
def test__rs(a):
rs = np.random.RandomState(1234)
# create an array with a pretty ridiculous outlier effect to try and fix
y = rs.normal(size=(100, 1000))
y[0] += 1000
y[:, 0] += 1000
out = correct._rs(y, axis=a)
# max will always be less than one, min will always be greater than zero
assert np.all(out.max(axis=a) <= 1) and np.all(out.min(axis=a) >= 0)
# we should have reduced skewness / kurtosis compared to the original
assert np.all(sstats.skew(out, axis=a) < sstats.skew(y, axis=a))
assert np.all(sstats.kurtosis(out, axis=a) < sstats.kurtosis(y, axis=a))
# this is a weird test; we're gonna bin the data at 0.2 intervals and make
# sure no bins are empty. if one is something probably went wrong, right?
for low in np.arange(0, 1, 0.2):
hi = low + 0.2 + np.spacing(1) # include 1
assert np.all(np.sum(np.logical_and(out >= low, out < hi), axis=a) > 0)