本文整理匯總了Python中scipy.stats.kstest方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.kstest方法的具體用法?Python stats.kstest怎麽用?Python stats.kstest使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats
的用法示例。
在下文中一共展示了stats.kstest方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: kolsmi
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kstest [as 別名]
def kolsmi(dist, fit_result, data):
"""Perform a Kolmogorow-Smirnow-Test for goodness of fit.
This tests the H0 hypothesis, if data is a sample of dist
Args:
dist: A mle.Distribution instance
fit_result: The solution dict, returned by the Distribution.fit method
data: The data used in Distribution.fit
Returns:
teststat: the test statistic, e.g. the max distance between the
cumulated distributions
p-value: the p-value, probability that dist describes the data
"""
variables = dist.get_vars()
if len(variables) > 1:
raise ValueError("Kolmogorov-Smirnov-Test is only valid for 1d distributions")
var = variables[0]
teststat, pvalue = stats.kstest(data[var.name], lambda x: dist.cdf(x, **fit_result["x"]))
return teststat, pvalue
示例2: test_parallel_statistical_significance
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kstest [as 別名]
def test_parallel_statistical_significance(self):
"""...Test that samples generated in parallel are statistically coherent
"""
n_task = 10
for thread_type in self.thread_types:
samples = self._generate_samples_in_parallel(
parallelization_type=thread_type, n_task=10)
for sample in samples:
# compute p-value with Kolmogorov–Smirnov test
p, _ = stats.kstest(sample, 'uniform')
self.assertLess(p, 0.05)
samples.resize((n_task * self.stat_size,))
# compute p-value with Kolmogorov–Smirnov test
p, _ = stats.kstest(samples, 'uniform')
self.assertLess(p, 0.05)
示例3: test_gaussian_random_with_bounds
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kstest [as 別名]
def test_gaussian_random_with_bounds(self):
"""...Test gaussian random numbers simulation with mean and scale
defined
"""
mu = -10
sigma = 0.5
seeded_sample = \
[-10.58093465, -10.31294449, -9.98125953, -10.34969085, -9.82447348]
self._test_dist_with_seed(seeded_sample, test_gaussian, mu, sigma)
# Statistical tests
sample = test_gaussian(mu, sigma, self.stat_size, self.test_seed)
p, _ = stats.kstest(sample, 'norm', (mu, sigma))
self.assertLess(p, 0.05)
示例4: test_haar
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kstest [as 別名]
def test_haar(self):
# Test that the eigenvalues, which lie on the unit circle in
# the complex plane, are uncorrelated.
# Generate samples
dim = 5
samples = 1000 # Not too many, or the test takes too long
np.random.seed(514) # Note that the test is sensitive to seed too
xs = unitary_group.rvs(dim, size=samples)
# The angles "x" of the eigenvalues should be uniformly distributed
# Overall this seems to be a necessary but weak test of the distribution.
eigs = np.vstack(scipy.linalg.eigvals(x) for x in xs)
x = np.arctan2(eigs.imag, eigs.real)
res = kstest(x.ravel(), uniform(-np.pi, 2*np.pi).cdf)
assert_(res.pvalue > 0.05)
示例5: testExponentialSample
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kstest [as 別名]
def testExponentialSample(self):
with self.test_session():
lam = tf.constant([3.0, 4.0])
lam_v = [3.0, 4.0]
n = tf.constant(100000)
exponential = tf.contrib.distributions.Exponential(lam=lam)
samples = exponential.sample(n, seed=137)
sample_values = samples.eval()
self.assertEqual(sample_values.shape, (100000, 2))
self.assertFalse(np.any(sample_values < 0.0))
for i in range(2):
self.assertLess(
stats.kstest(
sample_values[:, i], stats.expon(scale=1.0/lam_v[i]).cdf)[0],
0.01)
示例6: testExponentialSampleMultiDimensional
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kstest [as 別名]
def testExponentialSampleMultiDimensional(self):
with self.test_session():
batch_size = 2
lam_v = [3.0, 22.0]
lam = tf.constant([lam_v] * batch_size)
exponential = tf.contrib.distributions.Exponential(lam=lam)
n = 100000
samples = exponential.sample(n, seed=138)
self.assertEqual(samples.get_shape(), (n, batch_size, 2))
sample_values = samples.eval()
self.assertFalse(np.any(sample_values < 0.0))
for i in range(2):
self.assertLess(
stats.kstest(
sample_values[:, 0, i], stats.expon(scale=1.0/lam_v[i]).cdf)[0],
0.01)
self.assertLess(
stats.kstest(
sample_values[:, 1, i], stats.expon(scale=1.0/lam_v[i]).cdf)[0],
0.01)
示例7: test_evidence
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kstest [as 別名]
def test_evidence(self):
# 2 sigma tolerance
tolerance = 2.0*np.sqrt(self.work.NS.state.info/self.work.NS.Nlive)
print('2-sigma statistic error in logZ: {0:0.3f}'.format(tolerance))
print('Analytic logZ {0}'.format(self.model.analytic_log_Z))
print('Estimated logZ {0}'.format(self.work.NS.logZ))
pos=self.work.posterior_samples['x']
#t,pval=stats.kstest(pos,self.model.distr.cdf)
stat,pval = stats.normaltest(pos.T)
print('Normal test p-value {0}'.format(str(pval)))
plt.figure()
plt.hist(pos.ravel(),density=True)
x=np.linspace(self.model.bounds[0][0],self.model.bounds[0][1],100)
plt.plot(x,self.model.distr.pdf(x))
plt.title('NormalTest pval = {0}'.format(pval))
plt.savefig('posterior.png')
plt.figure()
plt.plot(pos.ravel(),',')
plt.title('chain')
plt.savefig('chain.png')
self.assertTrue(np.abs(self.work.NS.logZ - GaussianModel.analytic_log_Z)<tolerance, 'Incorrect evidence for normalised distribution: {0:.3f} instead of {1:.3f}'.format(self.work.NS.logZ,GaussianModel.analytic_log_Z ))
self.assertTrue(pval>0.01,'Normaltest test failed: KS stat = {0}'.format(pval))
示例8: test_evidence
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kstest [as 別名]
def test_evidence(self):
# 2 sigma tolerance
tolerance = 2.0*np.sqrt(self.work.NS.state.info/self.work.NS.Nlive)
print('2-sigma statistic error in logZ: {0:0.3f}'.format(tolerance))
print('Analytic logZ {0}'.format(self.model.analytic_log_Z))
print('Estimated logZ {0}'.format(self.work.NS.logZ))
pos=self.work.posterior_samples['x']
#t,pval=stats.kstest(pos,self.model.distr.cdf)
pos=self.work.posterior_samples['x']
#t,pval=stats.kstest(pos,self.model.distr.cdf)
plt.figure()
plt.hist(pos.ravel(),density=True)
x=np.linspace(self.model.bounds[0][0],self.model.bounds[0][1],100)
plt.plot(x,2*self.model.distr.pdf(x))
plt.savefig('posterior.png')
plt.figure()
plt.plot(pos.ravel(),',')
plt.title('chain')
plt.savefig('chain.png')
self.assertTrue(np.abs(self.work.NS.logZ - self.model.analytic_log_Z)<tolerance, 'Incorrect evidence for normalised distribution: {0:.3f} instead of {1:.3f}'.format(self.work.NS.logZ,self.model.analytic_log_Z ))
示例9: kolmogorov_smirnov_normality_test
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kstest [as 別名]
def kolmogorov_smirnov_normality_test(X,y):
"""
Performs the one sample Kolmogorov-Smirnov test, testing wheter the feature values of each class are drawn from a normal distribution
Keyword arguments:
X -- The feature vectors
y -- The target vector
"""
kolmogorov_smirnov={}
# print kolmogorov_smirnov
for feature_col in xrange(len(X[0])):
kolmogorov_smirnov[feature_col]=values=[]
for class_index in xrange(2):
values.append(stats.kstest(X[y==class_index,feature_col], 'norm'))
#debug
for f in xrange(23):
print kolmogorov_smirnov[f]
return kolmogorov_smirnov
示例10: _test_null_distribution_lrt
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kstest [as 別名]
def _test_null_distribution_lrt(self):
"""
Test if de.test.continuous() generates a uniform p-value distribution in lrt
if it is given data simulated based on the null model. Returns the p-value
of the two-side Kolmgorov-Smirnov test for equality of the observed
p-value distriubution and a uniform distribution.
:param n_cells: Number of cells to simulate (number of observations per test).
:param n_genes: Number of genes to simulate (number of tests).
"""
logging.getLogger("tensorflow").setLevel(logging.INFO)
logging.getLogger("batchglm").setLevel(logging.INFO)
logging.getLogger("diffxpy").setLevel(logging.WARNING)
self.noise_model = "nb"
np.random.seed(1)
test = self._test_null_model(nobs=2000, ngenes=100, test="lrt", constrained=False)
# Compare p-value distribution under null model against uniform distribution.
pval_h0 = stats.kstest(test.pval, 'uniform').pvalue
logging.getLogger("diffxpy").info('KS-test pvalue for null model match of wald(): %f' % pval_h0)
return True
示例11: ks_refine
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kstest [as 別名]
def ks_refine(varr, seeds, sig=0.05):
print("selecting seeds")
varr_sub = varr.sel(
spatial=[tuple(hw) for hw in seeds[['height', 'width']].values])
print("performing KS test")
ks = xr.apply_ufunc(
lambda x: kstest(zscore(x), 'norm')[1],
varr_sub.chunk(dict(frame=-1, spatial='auto')),
input_core_dims=[['frame']],
vectorize=True,
dask='parallelized',
output_dtypes=[float])
mask = ks < sig
mask_df = mask.to_pandas().rename('mask_ks').reset_index()
seeds = pd.merge(seeds, mask_df, on=['height', 'width'], how='left')
return seeds
示例12: checkNormalFit
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kstest [as 別名]
def checkNormalFit(x_train, y_train, x_control_train):
train = []
for i in range(0, len(y_train)):
temp1 = np.append(x_train[i], y_train[i])
temp2 = np.append(temp1, x_control_train[i])
train.append(temp2)
mean = np.mean(train, axis=0)
cov = np.cov(train, rowvar=0)
l = len(mean) - 2
for i in range(0, l):
for j in range(0, l):
if i != j:
cov[i][j] = 0
for i in range(0, len(train[0])):
data = []
for elem in train:
data.append(elem[i])
def cdf(x):
return st.norm.cdf(x, mean[i], math.sqrt(cov[i][i]))
print(st.kstest(data, cdf))
示例13: check_distribution_rvs
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kstest [as 別名]
def check_distribution_rvs(distfn, args, alpha, rvs):
## signature changed to avoid calling a distribution by name
# test from scipy.stats.tests
# this version reuses existing random variables
D,pval = stats.kstest(rvs, distfn.cdf, args=args, N=1000)
if (pval < alpha):
D,pval = stats.kstest(distfn.rvs, distfn.cdf, args=args, N=1000)
npt.assert_(pval > alpha, "D = " + str(D) + "; pval = " + str(pval) +
"; alpha = " + str(alpha) + "\nargs = " + str(args))
示例14: subtest_normal_distrib
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kstest [as 別名]
def subtest_normal_distrib(self, xs, mean, std):
_, pvalue = stats.kstest(xs, 'norm', (mean, std))
self.assertGreater(pvalue, 3e-3)
示例15: test_ks
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import kstest [as 別名]
def test_ks(self):
# cdf is slow
# Kolmogorov-Smirnov test against generating sample
stat, pvalue = stats.kstest(self.rvs, self.dist2.cdf)
assert_array_less(0.25, pvalue)