當前位置: 首頁>>代碼示例>>Python>>正文


Python stats.itemfreq方法代碼示例

本文整理匯總了Python中scipy.stats.itemfreq方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.itemfreq方法的具體用法?Python stats.itemfreq怎麽用?Python stats.itemfreq使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats的用法示例。


在下文中一共展示了stats.itemfreq方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: cross_entropy_loss_weighted

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import itemfreq [as 別名]
def cross_entropy_loss_weighted(output, labels):

    temp = labels.data.cpu().numpy()
    freqCount = scipystats.itemfreq(temp)
    total = freqCount[0][1]+freqCount[1][1]
    perc_1 = freqCount[1][1]/total
    perc_0 = freqCount[0][1]/total

    weight_array = [perc_1, perc_0]

    if torch.cuda.is_available():
        weight_tensor = torch.FloatTensor(weight_array).cuda()
    else:
        weight_tensor = torch.FloatTensor(weight_array)

    ce_loss = nn.CrossEntropyLoss(weight=weight_tensor)
    images, channels, height, width = output.data.shape
    loss = ce_loss(output, labels.long().view(images, height, width))
    return loss 
開發者ID:omkar13,項目名稱:MaskTrack,代碼行數:21,代碼來源:utility_functions.py

示例2: test_numeric_types

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import itemfreq [as 別名]
def test_numeric_types(self):
        # Check itemfreq works for all dtypes (adapted from np.unique tests)
        def _check_itemfreq(dt):
            a = np.array(self.a, dt)
            with suppress_warnings() as sup:
                sup.filter(DeprecationWarning)
                v = stats.itemfreq(a)
            assert_array_equal(v[:, 0], [1, 2, 5, 7])
            assert_array_equal(v[:, 1], np.array([20, 10, 20, 20], dtype=dt))

        dtypes = [np.int32, np.int64, np.float32, np.float64,
                  np.complex64, np.complex128]
        for dt in dtypes:
            _check_itemfreq(dt) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:16,代碼來源:test_stats.py

示例3: test_object_arrays

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import itemfreq [as 別名]
def test_object_arrays(self):
        a, b = self.a, self.b
        dt = 'O'
        aa = np.empty(len(a), dt)
        aa[:] = a
        bb = np.empty(len(b), dt)
        bb[:] = b
        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning)
            v = stats.itemfreq(aa)
        assert_array_equal(v[:, 0], bb) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:13,代碼來源:test_stats.py

示例4: test_structured_arrays

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import itemfreq [as 別名]
def test_structured_arrays(self):
        a, b = self.a, self.b
        dt = [('', 'i'), ('', 'i')]
        aa = np.array(list(zip(a, a)), dt)
        bb = np.array(list(zip(b, b)), dt)
        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning)
            v = stats.itemfreq(aa)
        # Arrays don't compare equal because v[:,0] is object array
        assert_equal(tuple(v[2, 0]), tuple(bb[2])) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:12,代碼來源:test_stats.py

示例5: unsupervised_clustering_accuracy

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import itemfreq [as 別名]
def unsupervised_clustering_accuracy(emb, labels):
    k = np.unique(labels).size
    kmeans = KMeans(n_clusters=k, max_iter=35, n_init=15, n_jobs=-1).fit(emb)
    emb_labels = kmeans.labels_
    G = np.zeros((k,k))
    for i in range(k):
        lbl = labels[emb_labels == i]
        uc = itemfreq(lbl)
        for uu, cc in uc:
            G[i,uu] = -cc
    A = linear_assignment_.linear_assignment(G)
    acc = 0.0
    for (cluster, best) in A:
        acc -= G[cluster,best]
    return acc / float(len(labels)) 
開發者ID:vithursant,項目名稱:MagnetLoss-PyTorch,代碼行數:17,代碼來源:utils.py

示例6: mean_blob_size

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import itemfreq [as 別名]
def mean_blob_size(mask):
    labels, labels_nr = ndi.label(mask)
    if labels_nr < 2:
        mean_area = 1
        mean_radius = 1
    else:
        mean_area = int(itemfreq(labels)[1:, 1].mean())
        mean_radius = int(np.round(np.sqrt(mean_area / np.pi)))
    return mean_area, mean_radius 
開發者ID:minerva-ml,項目名稱:open-solution-data-science-bowl-2018,代碼行數:11,代碼來源:postprocessing.py

示例7: compute_histogram

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import itemfreq [as 別名]
def compute_histogram(data, labels):
    histogram = dict(itemfreq(data))
    for label in labels:
        if label not in histogram:
            histogram[label] = .0
    return histogram 
開發者ID:rafaelvalle,項目名稱:MDI,代碼行數:8,代碼來源:processing.py

示例8: compute_histogram

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import itemfreq [as 別名]
def compute_histogram(data, labels):
    histogram = itemfreq(sorted(data))
    for label in labels:
        if label not in histogram[:,0]:
            histogram = np.vstack((histogram,
                                   np.array([[label, 0]], dtype=object)))
    histogram = histogram[histogram[:,0].argsort()]
    return histogram

# compute histograms 
開發者ID:rafaelvalle,項目名稱:MDI,代碼行數:12,代碼來源:example_adult.py

示例9: boc_term_vectors

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import itemfreq [as 別名]
def boc_term_vectors(word_list):
    word_list = [word.lower() for word in word_list]
    unique_chars = np.unique(
                        np.hstack([list(word) 
                        for word in word_list]))
    word_list_term_counts = [{char: count for char, count in itemfreq(list(word))}
                             for word in word_list]
    
    boc_vectors = [np.array([int(word_term_counts.get(char, 0)) 
                            for char in unique_chars])
                   for word_term_counts in word_list_term_counts]
    return list(unique_chars), boc_vectors 
開發者ID:dipanjanS,項目名稱:text-analytics-with-python,代碼行數:14,代碼來源:term_similarity.py

示例10: _calculate_leaf_value

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import itemfreq [as 別名]
def _calculate_leaf_value(self, targets):
        """Find optimal value for leaf."""
        if self.loss is not None:
            # Gradient boosting
            self.outcome = self.loss.approximate(targets["actual"], targets["y_pred"])
        else:
            # Random Forest
            if self.regression:
                # Mean value for regression task
                self.outcome = np.mean(targets["y"])
            else:
                # Probability for classification task
                self.outcome = stats.itemfreq(targets["y"])[:, 1] / float(targets["y"].shape[0]) 
開發者ID:rushter,項目名稱:MLAlgorithms,代碼行數:15,代碼來源:tree.py

示例11: test_ResizingMonitor_random_scale

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import itemfreq [as 別名]
def test_ResizingMonitor_random_scale(self):
        """Test the resizing monitor random scale capability."""
        import barrista.design as design
        import numpy as np
        from barrista.monitoring import CyclingDataMonitor, ResizingMonitor
        import barrista.monitoring as bm
        if bm._cv2 is None:
            # OpenCV is not available, so skip the test.
            return

        netspec = design.NetSpecification([[1, 3, 5, 5], [1, 1, 5, 5]],
                                          inputs=['a', 'b'],
                                          phase=design.Phase.TRAIN)
        net = netspec.instantiate()

        dmon = CyclingDataMonitor(
            only_preload=['a', 'b'],
            X={'a': [np.zeros((3, 6, 6))],
               'b': [np.ones((1, 6, 6))]})
        tmon = ResizingMonitor(
            blobinfos={'a': 1, 'b': 2},
            base_scale=2.,
            random_change_up_to=0.5,
            net_input_size_adjustment_multiple_of=1,
            interp_methods={'a':'c', 'b':'n'}
        )
        kwargs = {'net': net,
                  'testnet': net,
                  'callback_signal': 'initialize_train'}
        tmon._initialize_train(kwargs)
        dmon._initialize_train(kwargs)

        dmon._pre_fit({'net': net, 'callback_signal': 'pre_fit'})
        tmon._pre_fit({'net': net, 'callback_signal': 'pre_fit'})
        kwargs = {'net': net, 'testnet': net}
        scales = []
        np.random.seed(1)
        for _ in range(1000):
            dmon._pre_train_batch(kwargs)
            tmon._pre_train_batch(kwargs)
            scales.append(net.blobs['a'].data.shape[2])
        from scipy.stats import chisquare, itemfreq
        freq = itemfreq(scales)[:, 1]
        _, pvalue = chisquare(freq)
        self.assertTrue(pvalue > 0.1) 
開發者ID:classner,項目名稱:barrista,代碼行數:47,代碼來源:tests.py


注:本文中的scipy.stats.itemfreq方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。