當前位置: 首頁>>代碼示例>>Python>>正文


Python stats.iqr方法代碼示例

本文整理匯總了Python中scipy.stats.iqr方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.iqr方法的具體用法?Python stats.iqr怎麽用?Python stats.iqr使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats的用法示例。


在下文中一共展示了stats.iqr方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _check_params

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import iqr [as 別名]
def _check_params(n_iter, dis_measure, random_state):
    """Internal function to check for and validate class parameters.
    Also, to return random state instance and the appropriate dissimilarity
    measure if valid.
    """
    if isinstance(n_iter, int):
        check_parameter(n_iter, low=1, param_name='n_iter')
    else:
        raise TypeError("n_iter should be int, got %s" % n_iter)

    if isinstance(dis_measure, str):
        if dis_measure not in ('aad', 'var', 'iqr'):
            raise ValueError("Unknown dissimilarity measure type, "
                             "dis_measure should be in "
                             "(\'aad\', \'var\', \'iqr\'), "
                             "got %s" % dis_measure)
        # TO-DO: 'mad': Median Absolute Deviation to be added
        # once Scipy stats version 1.3.0 is released
    else:
        raise TypeError("dis_measure should be str, got %s" % dis_measure)

    return check_random_state(random_state), _aad if dis_measure == 'aad' \
        else (np.var if dis_measure == 'var'
              else (stats.iqr if dis_measure == 'iqr' else None)) 
開發者ID:yzhao062,項目名稱:pyod,代碼行數:26,代碼來源:lmdd.py

示例2: std_iqr

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import iqr [as 別名]
def std_iqr(x):
    """Robust estimation of the standard deviation, based on the inter-quartile
    (IQR) distance of x.
    This computes the IQR of x, and applies the Gaussian distribution
    correction, making it a consistent estimator of the standard-deviation
    (when the sample looks Gaussian with outliers).

    Parameters
    ----------
    x : `np.ndarray`
        Input vector

    Returns
    -------
    output : `float`
        A robust estimation of the standard deviation
    """
    from scipy.stats import iqr
    from scipy.special import erfinv

    correction = 2 ** 0.5 * erfinv(0.5)
    return correction * iqr(x) 
開發者ID:X-DataInitiative,項目名稱:tick,代碼行數:24,代碼來源:robust.py

示例3: test_constant

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import iqr [as 別名]
def test_constant(self):
        # Constant array always gives 0
        x = np.ones((7, 4))
        assert_equal(stats.iqr(x), 0.0)
        assert_array_equal(stats.iqr(x, axis=0), np.zeros(4))
        assert_array_equal(stats.iqr(x, axis=1), np.zeros(7))
        # Even for older versions, 'linear' does not raise a warning
        with _numpy_version_warn_context_mgr('1.9.0a', RuntimeWarning, 4):
            assert_equal(stats.iqr(x, interpolation='linear'), 0.0)
            assert_equal(stats.iqr(x, interpolation='midpoint'), 0.0)
            assert_equal(stats.iqr(x, interpolation='nearest'), 0.0)
            assert_equal(stats.iqr(x, interpolation='lower'), 0.0)
            assert_equal(stats.iqr(x, interpolation='higher'), 0.0)

        # 0 only along constant dimensions
        # This also tests much of `axis`
        y = np.ones((4, 5, 6)) * np.arange(6)
        assert_array_equal(stats.iqr(y, axis=0), np.zeros((5, 6)))
        assert_array_equal(stats.iqr(y, axis=1), np.zeros((4, 6)))
        assert_array_equal(stats.iqr(y, axis=2), 2.5 * np.ones((4, 5)))
        assert_array_equal(stats.iqr(y, axis=(0, 1)), np.zeros(6))
        assert_array_equal(stats.iqr(y, axis=(0, 2)), 3. * np.ones(5))
        assert_array_equal(stats.iqr(y, axis=(1, 2)), 3. * np.ones(4)) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:25,代碼來源:test_stats.py

示例4: _rs

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import iqr [as 別名]
def _rs(data, axis=0):
    """
    Normalizes `data` with a robust sigmoid function

    Parameters
    ----------
    data : array_like
        Input data array to be transformed
    axis : int, optional
        Axis of `data` to be normalized

    Returns
    -------
    normed : array_like
        Normalized input `data`
    """

    data = np.asanyarray(data)

    # calculate sigmoid normalization
    med = np.median(data, axis=axis, keepdims=True)
    iqr = sstats.iqr(data, axis=axis, scale='normal', keepdims=True)
    normed = 1 / (1 + np.exp(-(data - med) / iqr))

    return normed 
開發者ID:rmarkello,項目名稱:abagen,代碼行數:27,代碼來源:correct.py

示例5: add_features_in_group

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import iqr [as 別名]
def add_features_in_group(features, gr_, feature_name, aggs, prefix):
    for agg in aggs:
        if agg == 'sum':
            features['{}{}_sum'.format(prefix, feature_name)] = gr_[feature_name].sum()
        elif agg == 'mean':
            features['{}{}_mean'.format(prefix, feature_name)] = gr_[feature_name].mean()
        elif agg == 'max':
            features['{}{}_max'.format(prefix, feature_name)] = gr_[feature_name].max()
        elif agg == 'min':
            features['{}{}_min'.format(prefix, feature_name)] = gr_[feature_name].min()
        elif agg == 'std':
            features['{}{}_std'.format(prefix, feature_name)] = gr_[feature_name].std()
        elif agg == 'count':
            features['{}{}_count'.format(prefix, feature_name)] = gr_[feature_name].count()
        elif agg == 'skew':
            features['{}{}_skew'.format(prefix, feature_name)] = skew(gr_[feature_name])
        elif agg == 'kurt':
            features['{}{}_kurt'.format(prefix, feature_name)] = kurtosis(gr_[feature_name])
        elif agg == 'iqr':
            features['{}{}_iqr'.format(prefix, feature_name)] = iqr(gr_[feature_name])
        elif agg == 'median':
            features['{}{}_median'.format(prefix, feature_name)] = gr_[feature_name].median()

    return features 
開發者ID:minerva-ml,項目名稱:open-solution-home-credit,代碼行數:26,代碼來源:feature_extraction.py

示例6: test_basic

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import iqr [as 別名]
def test_basic(self):
        x = np.arange(8) * 0.5
        np.random.shuffle(x)
        assert_equal(stats.iqr(x), 1.75) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:6,代碼來源:test_stats.py

示例7: test_api

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import iqr [as 別名]
def test_api(self):
        d = np.ones((5, 5))
        stats.iqr(d)
        stats.iqr(d, None)
        stats.iqr(d, 1)
        stats.iqr(d, (0, 1))
        stats.iqr(d, None, (10, 90))
        stats.iqr(d, None, (30, 20), 'raw')
        stats.iqr(d, None, (25, 75), 1.5, 'propagate')
        if NumpyVersion(np.__version__) >= '1.9.0a':
            stats.iqr(d, None, (50, 50), 'normal', 'raise', 'linear')
            stats.iqr(d, None, (25, 75), -0.4, 'omit', 'lower', True) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:14,代碼來源:test_stats.py

示例8: test_empty

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import iqr [as 別名]
def test_empty(self):
        assert_equal(stats.iqr([]), np.nan)
        assert_equal(stats.iqr(np.arange(0)), np.nan) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:5,代碼來源:test_stats.py

示例9: test_scalarlike

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import iqr [as 別名]
def test_scalarlike(self):
        x = np.arange(1) + 7.0
        assert_equal(stats.iqr(x[0]), 0.0)
        assert_equal(stats.iqr(x), 0.0)
        if NumpyVersion(np.__version__) >= '1.9.0a':
            assert_array_equal(stats.iqr(x, keepdims=True), [0.0])
        else:
            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter("always")
                assert_array_equal(stats.iqr(x, keepdims=True), 0.0)
                _check_warnings(w, RuntimeWarning, 1) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:13,代碼來源:test_stats.py

示例10: test_rng

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import iqr [as 別名]
def test_rng(self):
        x = np.arange(5)
        assert_equal(stats.iqr(x), 2)
        assert_equal(stats.iqr(x, rng=(25, 87.5)), 2.5)
        assert_equal(stats.iqr(x, rng=(12.5, 75)), 2.5)
        assert_almost_equal(stats.iqr(x, rng=(10, 50)), 1.6)  # 3-1.4

        assert_raises(ValueError, stats.iqr, x, rng=(0, 101))
        assert_raises(ValueError, stats.iqr, x, rng=(np.nan, 25))
        assert_raises(TypeError, stats.iqr, x, rng=(0, 50, 60)) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:12,代碼來源:test_stats.py

示例11: test_keepdims

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import iqr [as 別名]
def test_keepdims(self):
        numpy_version = NumpyVersion(np.__version__)

        # Also tests most of `axis`
        x = np.ones((3, 5, 7, 11))
        assert_equal(stats.iqr(x, axis=None, keepdims=False).shape, ())
        assert_equal(stats.iqr(x, axis=2, keepdims=False).shape, (3, 5, 11))
        assert_equal(stats.iqr(x, axis=(0, 1), keepdims=False).shape, (7, 11))
        assert_equal(stats.iqr(x, axis=(0, 3), keepdims=False).shape, (5, 7))
        assert_equal(stats.iqr(x, axis=(1,), keepdims=False).shape, (3, 7, 11))
        assert_equal(stats.iqr(x, (0, 1, 2, 3), keepdims=False).shape, ())
        assert_equal(stats.iqr(x, axis=(0, 1, 3), keepdims=False).shape, (7,))

        if numpy_version >= '1.9.0a':
            assert_equal(stats.iqr(x, axis=None, keepdims=True).shape, (1, 1, 1, 1))
            assert_equal(stats.iqr(x, axis=2, keepdims=True).shape, (3, 5, 1, 11))
            assert_equal(stats.iqr(x, axis=(0, 1), keepdims=True).shape, (1, 1, 7, 11))
            assert_equal(stats.iqr(x, axis=(0, 3), keepdims=True).shape, (1, 5, 7, 1))
            assert_equal(stats.iqr(x, axis=(1,), keepdims=True).shape, (3, 1, 7, 11))
            assert_equal(stats.iqr(x, (0, 1, 2, 3), keepdims=True).shape, (1, 1, 1, 1))
            assert_equal(stats.iqr(x, axis=(0, 1, 3), keepdims=True).shape, (1, 1, 7, 1))
        else:
            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter("always")
                assert_equal(stats.iqr(x, axis=None, keepdims=True).shape, ())
                assert_equal(stats.iqr(x, axis=2, keepdims=True).shape, (3, 5, 11))
                assert_equal(stats.iqr(x, axis=(0, 1), keepdims=True).shape, (7, 11))
                assert_equal(stats.iqr(x, axis=(0, 3), keepdims=True).shape, (5, 7))
                assert_equal(stats.iqr(x, axis=(1,), keepdims=True).shape, (3, 7, 11))
                assert_equal(stats.iqr(x, (0, 1, 2, 3), keepdims=True).shape, ())
                assert_equal(stats.iqr(x, axis=(0, 1, 3), keepdims=True).shape, (7,))
                _check_warnings(w, RuntimeWarning, 7) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:34,代碼來源:test_stats.py

示例12: median_similarity

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import iqr [as 別名]
def median_similarity(self, column, tolerance=2):
        new_median = float(np.median(self.new_data[column]))
        old_median = float(np.median(self.historical_data[column]))
        iqr = float(stats.iqr(self.historical_data[column]))
        upper_bound = old_median + (iqr * tolerance)
        lower_bound = old_median - (iqr * tolerance)
        if new_median < lower_bound:
            return False
        elif new_median > upper_bound:
            return False
        else:
            return True 
開發者ID:EricSchles,項目名稱:drifter_ml,代碼行數:14,代碼來源:columnar_tests.py

示例13: describe_scores

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import iqr [as 別名]
def describe_scores(self, scores, method):
        """
        Describes scores.
        
        Parameters
        ----------
        scores : array-like
          the scores from the model, as a list or numpy array
        method : string
          the method to use to calculate central tendency and spread
        
        Returns
        -------
        Returns the central tendency, and spread
        by method.
        
        Methods:
        mean:
        * central tendency: mean
        * spread: standard deviation
        
        median:
        * central tendency: median
        * spread: interquartile range
        
        trimean:
        * central tendency: trimean
        * spread: trimean absolute deviation
        """
        if method == "mean":
            return np.mean(scores), np.std(scores)
        elif method == "median":
            return np.median(scores), stats.iqr(scores)
        elif method == "trimean":
            return self.trimean(scores), self.trimean_absolute_deviation(scores) 
開發者ID:EricSchles,項目名稱:drifter_ml,代碼行數:37,代碼來源:regression_tests.py

示例14: _mixedsig

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import iqr [as 別名]
def _mixedsig(data, low=0, high=1, axis=0):
    """
    Uses `_scaledsig()` if IQR is 0; otherwise, uses `_srs()`

    Parameters
    ----------
    data : array_like
        Input data array to be transformed
    low : float, optional
        Lower bound for rescaling. Default: 0
    high : float, optional
        Upper bound for rescaling. Default: 1
    axis : int, optional
        Axis of `data` to be normalized

    Returns
    -------
    normed : array_like
        Normalized input `data`
    """

    data = np.asanyarray(data)

    iqr = sstats.iqr(data, axis=axis, scale='normal')
    mask = iqr == 0

    normed = np.zeros_like(data)
    normed[:, mask] = _scaledsig(data[:, mask])
    normed[:, ~mask] = _srs(data[:, ~mask])

    # constant columns set to 0
    return np.nan_to_num(normed) 
開發者ID:rmarkello,項目名稱:abagen,代碼行數:34,代碼來源:correct.py

示例15: find_bad_by_deviation

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import iqr [as 別名]
def find_bad_by_deviation(self, deviation_thresh=3.29053):
        """Detect channels that contain extreme amplitudes.

        This function is working on robust z-scores. You might want to
        select the thresholds according to how much of the data is expected
        to fall within the absolute bounds:

        95.0% --> 1.95996

        97.0% --> 2.17009

        99.0% --> 2.57583

        99.9% --> 3.29053

        Parameters
        ----------
        deviation_thresh : float
            Channels with a higher amplitude z-score than `deviation_thresh`
            will be considered bad_by_deviation.

        """
        # Calculate robust z-score of robust standard deviation for each chan
        chn_devi = 0.7413 * iqr(self.x, axis=1)
        chn_devi_sd = 0.7413 * iqr(chn_devi, axis=0)
        chn_devi_median = np.median(chn_devi)
        robust_chn_devi = (chn_devi - chn_devi_median) / chn_devi_sd

        # z-scores exceeding our theshold are classified as bad
        bad_idxs_bool = np.abs(robust_chn_devi) > deviation_thresh
        bad_idxs = np.argwhere(bad_idxs_bool)
        bads = self.ch_names[bad_idxs.astype(int)]
        bads = [i[0] for i in bads]
        bads.sort()
        self.bad_by_deviation = bads
        self._channel_deviations = robust_chn_devi
        return None 
開發者ID:sappelhoff,項目名稱:pyprep,代碼行數:39,代碼來源:noisy.py


注:本文中的scipy.stats.iqr方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。