本文整理匯總了Python中scipy.stats.hmean方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.hmean方法的具體用法?Python stats.hmean怎麽用?Python stats.hmean使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats
的用法示例。
在下文中一共展示了stats.hmean方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _computer_harmoic_mean_of_probabilities_over_non_zero_in_category_count_terms
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import hmean [as 別名]
def _computer_harmoic_mean_of_probabilities_over_non_zero_in_category_count_terms(self,
cat_word_counts,
p_category_given_word,
p_word_given_category,
scaler):
df = pd.DataFrame({
'cat_word_counts': cat_word_counts,
'p_word_given_category': p_word_given_category,
'p_category_given_word': p_category_given_word
})
df_with_count = df[df['cat_word_counts'] > 0]
df_with_count['scale p_word_given_category'] = scaler(df_with_count['p_word_given_category'])
df_with_count['scale p_category_given_word'] = scaler(df_with_count['p_category_given_word'])
df['scale p_word_given_category'] = 0
df.loc[df_with_count.index, 'scale p_word_given_category'] = df_with_count['scale p_word_given_category']
df['scale p_category_given_word'] = 0
df.loc[df_with_count.index, 'scale p_category_given_word'] \
= df_with_count['scale p_category_given_word']
score = hmean([df_with_count['scale p_category_given_word'],
df_with_count['scale p_word_given_category']])
df['score'] = 0
df.loc[df_with_count.index, 'score'] = score
return df['score']
示例2: computeF1_macro
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import hmean [as 別名]
def computeF1_macro(confusion_matrix,matching, num_clusters):
"""
computes the macro F1 score
confusion matrix : requres permutation
matching according to which matrix must be permuted
"""
##Permute the matrix columns
permuted_confusion_matrix = np.zeros([num_clusters,num_clusters])
for cluster in xrange(num_clusters):
matched_cluster = matching[cluster]
permuted_confusion_matrix[:,cluster] = confusion_matrix[:,matched_cluster]
##Compute the F1 score for every cluster
F1_score = 0
for cluster in xrange(num_clusters):
TP = permuted_confusion_matrix[cluster,cluster]
FP = np.sum(permuted_confusion_matrix[:,cluster]) - TP
FN = np.sum(permuted_confusion_matrix[cluster,:]) - TP
precision = TP/(TP + FP)
recall = TP/(TP + FN)
f1 = stats.hmean([precision,recall])
F1_score += f1
F1_score /= num_clusters
return F1_score
示例3: test_1D_list
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import hmean [as 別名]
def test_1D_list(self):
a = (1,2,3,4)
actual = stats.hmean(a)
desired = 4. / (1./1 + 1./2 + 1./3 + 1./4)
assert_almost_equal(actual, desired, decimal=14)
desired1 = stats.hmean(array(a),axis=-1)
assert_almost_equal(actual, desired1, decimal=14)
示例4: test_1D_array
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import hmean [as 別名]
def test_1D_array(self):
a = array((1,2,3,4), float64)
actual = stats.hmean(a)
desired = 4. / (1./1 + 1./2 + 1./3 + 1./4)
assert_almost_equal(actual, desired, decimal=14)
desired1 = stats.hmean(a,axis=-1)
assert_almost_equal(actual, desired1, decimal=14)
示例5: test_2D_array_default
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import hmean [as 別名]
def test_2D_array_default(self):
a = array(((1,2,3,4),
(1,2,3,4),
(1,2,3,4)))
actual = stats.hmean(a)
desired = array((1.,2.,3.,4.))
assert_array_almost_equal(actual, desired, decimal=14)
actual1 = stats.hmean(a,axis=0)
assert_array_almost_equal(actual1, desired, decimal=14)
示例6: test_2D_array_dim1
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import hmean [as 別名]
def test_2D_array_dim1(self):
a = array(((1,2,3,4),
(1,2,3,4),
(1,2,3,4)))
v = 4. / (1./1 + 1./2 + 1./3 + 1./4)
desired1 = array((v,v,v))
actual1 = stats.hmean(a, axis=1)
assert_array_almost_equal(actual1, desired1, decimal=14)
示例7: do
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import hmean [as 別名]
def do(self, a, b, axis=None, dtype=None):
x = stats.hmean(a, axis=axis, dtype=dtype)
assert_almost_equal(b, x)
assert_equal(x.dtype, dtype)
示例8: test_1D
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import hmean [as 別名]
def test_1D(self):
a = (1,2,3,4)
actual = mstats.hmean(a)
desired = 4. / (1./1 + 1./2 + 1./3 + 1./4)
assert_almost_equal(actual, desired, decimal=14)
desired1 = mstats.hmean(ma.array(a),axis=-1)
assert_almost_equal(actual, desired1, decimal=14)
a = ma.array((1,2,3,4),mask=(0,0,0,1))
actual = mstats.hmean(a)
desired = 3. / (1./1 + 1./2 + 1./3)
assert_almost_equal(actual, desired,decimal=14)
desired1 = mstats.hmean(a,axis=-1)
assert_almost_equal(actual, desired1, decimal=14)
示例9: test_1D_float96
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import hmean [as 別名]
def test_1D_float96(self):
a = ma.array((1,2,3,4), mask=(0,0,0,1))
actual_dt = mstats.hmean(a, dtype=np.float96)
desired_dt = np.asarray(3. / (1./1 + 1./2 + 1./3),
dtype=np.float96)
assert_almost_equal(actual_dt, desired_dt, decimal=14)
assert_(actual_dt.dtype == desired_dt.dtype)
示例10: test_2D
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import hmean [as 別名]
def test_2D(self):
a = ma.array(((1,2,3,4),(1,2,3,4),(1,2,3,4)),
mask=((0,0,0,0),(1,0,0,1),(0,1,1,0)))
actual = mstats.hmean(a)
desired = ma.array((1,2,3,4))
assert_array_almost_equal(actual, desired, decimal=14)
actual1 = mstats.hmean(a,axis=-1)
desired = (4./(1/1.+1/2.+1/3.+1/4.),
2./(1/2.+1/3.),
2./(1/1.+1/4.)
)
assert_array_almost_equal(actual1, desired, decimal=14)
示例11: test_hmean
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import hmean [as 別名]
def test_hmean(self):
for n in self.get_n():
x, y, xm, ym = self.generate_xy_sample(n)
r = stats.hmean(abs(x))
rm = stats.mstats.hmean(abs(xm))
assert_almost_equal(r, rm, 10)
r = stats.hmean(abs(y))
rm = stats.mstats.hmean(abs(ym))
assert_almost_equal(r, rm, 10)
示例12: all_features
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import hmean [as 別名]
def all_features():
""" Returns dictionary of all features in the module
.. note:: Some of the features (hist4, corr) are relatively expensive to compute
"""
features = {'mean': mean,
'median': median,
'gmean': gmean,
'hmean': hmean,
'vec_sum': vec_sum,
'abs_sum': abs_sum,
'abs_energy': abs_energy,
'std': std,
'var': var,
'mad': median_absolute_deviation,
'variation': variation,
'min': minimum,
'max': maximum,
'skew': skew,
'kurt': kurt,
'mean_diff': mean_diff,
'mean_abs_diff': means_abs_diff,
'mse': mse,
'mnx': mean_crossings,
'hist4': hist(),
'corr': corr2,
'mean_abs_value': mean_abs,
'zero_crossings': zero_crossing(),
'slope_sign_changes': slope_sign_changes(),
'waveform_length': waveform_length,
'emg_var': emg_var,
'root_mean_square': root_mean_square,
'willison_amplitude': willison_amplitude()}
return features
示例13: hmean
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import hmean [as 別名]
def hmean(X):
""" harmonic mean for each variable """
return stats.hmean(X, axis=1)
示例14: computeF1_macro
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import hmean [as 別名]
def computeF1_macro(confusion_matrix,matching, num_clusters):
"""
computes the macro F1 score
confusion matrix : requres permutation
matching according to which matrix must be permuted
"""
##Permute the matrix columns
permuted_confusion_matrix = np.zeros([num_clusters,num_clusters])
for cluster in xrange(num_clusters):
matched_cluster = matching[cluster]
permuted_confusion_matrix[:,cluster] = confusion_matrix[:,matched_cluster]
##Compute the F1 score for every cluster
F1_score = 0
for cluster in xrange(num_clusters):
TP = permuted_confusion_matrix[cluster,cluster]
FP = np.sum(permuted_confusion_matrix[:,cluster]) - TP
FN = np.sum(permuted_confusion_matrix[cluster,:]) - TP
precision = TP/(TP + FP)
recall = TP/(TP + FN)
f1 = stats.hmean([precision,recall])
F1_score += f1
F1_score /= num_clusters
return F1_score
############
##The basic folder to be created
示例15: create_modeling_tables
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import hmean [as 別名]
def create_modeling_tables(spi_historical, spi_fixtures, fd_historical, fd_fixtures, names_mapping):
"""Create tables for machine learning modeling."""
# Rename teams
for col in ['team1', 'team2']:
spi_historical = pd.merge(spi_historical, names_mapping, left_on=col, right_on='left_team', how='left').drop(columns=[col, 'left_team']).rename(columns={'right_team': col})
spi_fixtures = pd.merge(spi_fixtures, names_mapping, left_on=col, right_on='left_team', how='left').drop(columns=[col, 'left_team']).rename(columns={'right_team': col})
# Combine data
historical = pd.merge(spi_historical, fd_historical, left_on=SPI_KEYS, right_on=FD_KEYS).dropna(subset=ODDS_COLS_MAPPING.keys(), how='any').reset_index(drop=True)
fixtures = pd.merge(spi_fixtures, fd_fixtures, left_on=SPI_KEYS, right_on=FD_KEYS)
# Extract training, odds and fixtures
X = historical.loc[:, ['season'] + SPI_KEYS + INPUT_COLS]
y = historical.loc[:, OUTPUT_COLS]
odds = historical.loc[:, SPI_KEYS + list(ODDS_COLS_MAPPING.keys())].rename(columns=ODDS_COLS_MAPPING)
X_test = fixtures.loc[:, SPI_KEYS + INPUT_COLS]
odds_test = fixtures.loc[:, SPI_KEYS + list(ODDS_COLS_MAPPING.keys())].rename(columns=ODDS_COLS_MAPPING)
# Add average scores columns
for ind in (1, 2):
avg_score = y[['adj_score%s' % ind, 'xg%s' % ind, 'nsxg%s' % ind]].mean(axis=1)
avg_score[avg_score.isna()] = y['score%s' % ind]
y['avg_score%s' % ind] = avg_score
# Add combined odds columns
for target in TARGETS:
if '+' in target:
targets = target.split('+')
odds[target] = combine_odds(odds[targets])
odds_test[target] = combine_odds(odds_test[targets])
# Feature extraction
with np.errstate(divide='ignore', invalid='ignore'):
for df in (X, X_test):
df['quality'] = hmean(df[['spi1', 'spi2']], axis=1)
df['importance'] = df[['importance1', 'importance2']].mean(axis=1)
df['rating'] = df[['quality', 'importance']].mean(axis=1)
df['sum_proj_score'] = df['proj_score1'] + df['proj_score2']
return X, y, odds, X_test, odds_test