本文整理匯總了Python中scipy.stats.gmean方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.gmean方法的具體用法?Python stats.gmean怎麽用?Python stats.gmean使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats
的用法示例。
在下文中一共展示了stats.gmean方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: geometric_mean_var
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import gmean [as 別名]
def geometric_mean_var(z):
for row in np.eye(z.shape[1]):
if not np.any(np.all(row == z, axis=1)):
z = np.row_stack([z, row])
n_points, n_dim = z.shape
D = vectorized_cdist(z, z)
np.fill_diagonal(D, np.inf)
k = n_dim - 1
I = D.argsort(axis=1)[:, :k]
first = np.column_stack([np.arange(n_points) for _ in range(k)])
val = gmean(D[first, I], axis=1)
return val.var()
示例2: test_1D
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import gmean [as 別名]
def test_1D(self):
a = (1,2,3,4)
actual = mstats.gmean(a)
desired = np.power(1*2*3*4,1./4.)
assert_almost_equal(actual, desired, decimal=14)
desired1 = mstats.gmean(a,axis=-1)
assert_almost_equal(actual, desired1, decimal=14)
assert_(not isinstance(desired1, ma.MaskedArray))
a = ma.array((1,2,3,4),mask=(0,0,0,1))
actual = mstats.gmean(a)
desired = np.power(1*2*3,1./3.)
assert_almost_equal(actual, desired,decimal=14)
desired1 = mstats.gmean(a,axis=-1)
assert_almost_equal(actual, desired1, decimal=14)
示例3: rl_reward
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import gmean [as 別名]
def rl_reward(env):
delay = np.asarray(env.env_D)
mask = delay == np.inf
delay[mask] = len(delay)*np.max(delay[~mask])
if env.PRAEMIUM == 'AVG':
reward = -np.mean(matrix_to_rl(delay))
elif env.PRAEMIUM == 'MAX':
reward = -np.max(matrix_to_rl(delay))
elif env.PRAEMIUM == 'AXM':
reward = -(np.mean(matrix_to_rl(delay)) + np.max(matrix_to_rl(delay)))/2
elif env.PRAEMIUM == 'GEO':
reward = -stats.gmean(matrix_to_rl(delay))
elif env.PRAEMIUM == 'LOST':
reward = -env.env_L
return reward
# WRAPPER ITSELF
開發者ID:knowledgedefinednetworking,項目名稱:a-deep-rl-approach-for-sdn-routing-optimization,代碼行數:22,代碼來源:Environment.py
示例4: main
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import gmean [as 別名]
def main() -> None:
throughputs_hase = []
throughputs_original = []
for i in range(args.n):
with open(f"{args.name}_{i}.out") as file:
benchmarks, throughput = parse(file)
throughputs_original.append(throughput)
with open(f"{args.name}_hase_{i}.out") as file:
benchmarks, throughput = parse(file)
throughputs_hase.append(throughput)
throughputs_hase = np.array(throughputs_hase)
throughputs_original = np.array(throughputs_original)
ratios = aggregate(throughputs_hase) / aggregate(throughputs_original)
for i in range(len(benchmarks)):
print(f"{benchmarks[i]}\t{ratios[i]:.4f}")
print("GeoMean\t" + str(gmean(ratios)))
示例5: main
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import gmean [as 別名]
def main() -> None:
throughputs_hase = []
throughputs_original = []
for i in range(args.n):
with open(f"{args.outdir}/{args.name}_{i}.out") as file:
benchmarks, throughput = parse(file)
throughputs_original.append(throughput)
with open(f"{args.outdir}/{args.name}_hase_{i}.out") as file:
benchmarks, throughput = parse(file)
throughputs_hase.append(throughput)
throughputs_hase = np.array(throughputs_hase)
throughputs_original = np.array(throughputs_original)
ratios = aggregate(throughputs_hase) / aggregate(throughputs_original)
for i in range(len(benchmarks)):
print(f"{benchmarks[i]}\t{ratios[i]:.4f}")
print("GeoMean\t" + str(gmean(ratios)))
示例6: main
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import gmean [as 別名]
def main() -> None:
throughputs_hase = []
throughputs_original = []
for i in range(args.n):
with open(f"{args.name}_{i}.out") as file:
benchmarks, throughput = parse(file)
throughputs_original.append(throughput)
with open(f"{args.name}_hase_{i}.out") as file:
benchmarks, throughput = parse(file)
throughputs_hase.append(throughput)
throughputs_hase = np.array(throughputs_hase)
throughputs_original = np.array(throughputs_original)
ratios = aggregate(throughputs_hase) / aggregate(throughputs_original)
for i in range(len(benchmarks)):
print(f"{benchmarks[i]}\t{ratios[i]:.4f}")
# print("GeoMean\t" + str(gmean(ratios)))
示例7: _aggregate_test_prediction
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import gmean [as 別名]
def _aggregate_test_prediction(out_of_fold_test_predictions):
agg_methods = {'mean': np.mean,
'gmean': gmean}
prediction_column = [col for col in out_of_fold_test_predictions.columns if '_prediction' in col][0]
if params.aggregation_method == 'rank_mean':
rank_column = prediction_column.replace('_prediction', '_rank')
test_predictions_with_ranks = []
for fold_id, fold_df in out_of_fold_test_predictions.groupby('fold_id'):
fold_df[rank_column] = calculate_rank(fold_df[prediction_column])
test_predictions_with_ranks.append(fold_df)
test_predictions_with_ranks = pd.concat(test_predictions_with_ranks, axis=0)
test_prediction_aggregated = test_predictions_with_ranks.groupby(cfg.ID_COLUMNS)[rank_column].apply(
np.mean).reset_index()
else:
test_prediction_aggregated = out_of_fold_test_predictions.groupby(cfg.ID_COLUMNS)[prediction_column].apply(
agg_methods[params.aggregation_method]).reset_index()
test_prediction_aggregated.columns = [cfg.ID_COLUMNS + cfg.TARGET_COLUMNS]
return test_prediction_aggregated
示例8: get_statistical_property_scores_per_input_per_impl
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import gmean [as 別名]
def get_statistical_property_scores_per_input_per_impl(self, func: StatisticalPropertyFunc, input_num: int,
reduce: ReduceFunc = stats.gmean) -> t.Dict[str, t.List[float]]:
"""
Assumptions:
- Most programs have the same number of input (known as max input number)
- The input number n takes roughly the same amount of time for every program category
"""
cats = self._get_categories_for_number_of_inputs(self.get_max_input_num())
scores_per_impl = InsertionTimeOrderedDict()
for cat in cats:
scores = cat.get_statistical_property_scores_per_input_per_impl(func, cat.get_input_strs()[input_num])
for impl in scores:
if impl not in scores_per_impl:
scores_per_impl[impl] = []
scores_per_impl[impl].append(reduce(scores[impl]))
return scores_per_impl
示例9: _compute_neighborhood_graph_weight
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import gmean [as 別名]
def _compute_neighborhood_graph_weight(self, root, graph):
# list all nodes at increasing distances
# at each distance
# compute the arithmetic mean weight on nodes
# compute the geometric mean weight on edges
# compute the product of the two
# make a list of the neighborhood_graph_weight at every distance
neighborhood_graph_weight_list = []
w = graph.nodes[root][self.key_weight]
node_weight_list = np.array([w], dtype=np.float64)
node_average = node_weight_list[0]
edge_weight_list = np.array([1], dtype=np.float64)
edge_average = edge_weight_list[0]
# for all distances
root_dist_dict = graph.nodes[root]['remote_neighbours']
for dist in root_dist_dict.keys():
# extract array of weights at given dist
weight_array_at_d = np.array([graph.nodes[v][self.key_weight]
for v in root_dist_dict[dist]],
dtype=np.float64)
if dist % 2 == 0: # nodes
node_weight_list = np.concatenate(
(node_weight_list, weight_array_at_d))
node_average = np.mean(node_weight_list)
else: # edges
edge_weight_list = np.concatenate(
(edge_weight_list, weight_array_at_d))
edge_average = stats.gmean(edge_weight_list)
weight = node_average * edge_average
neighborhood_graph_weight_list.append(weight)
graph.nodes[root]['neigh_graph_weight'] = \
neighborhood_graph_weight_list
示例10: agg_method
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import gmean [as 別名]
def agg_method(self):
methods = {'mean': np.mean,
'max': np.max,
'min': np.min,
'gmean': gmean
}
return partial(methods[self.method], axis=-1)
示例11: gmean
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import gmean [as 別名]
def gmean(self):
"""Returns the gmean of the models predictions.
Returns
-------
`PipeApply`
"""
return self.apply(lambda x: gmean(x, axis=0))
示例12: test_1D_list
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import gmean [as 別名]
def test_1D_list(self):
a = (1,2,3,4)
actual = stats.gmean(a)
desired = power(1*2*3*4,1./4.)
assert_almost_equal(actual, desired,decimal=14)
desired1 = stats.gmean(a,axis=-1)
assert_almost_equal(actual, desired1, decimal=14)
示例13: test_1D_array
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import gmean [as 別名]
def test_1D_array(self):
a = array((1,2,3,4), float32)
actual = stats.gmean(a)
desired = power(1*2*3*4,1./4.)
assert_almost_equal(actual, desired, decimal=7)
desired1 = stats.gmean(a,axis=-1)
assert_almost_equal(actual, desired1, decimal=7)
示例14: test_2D_array_default
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import gmean [as 別名]
def test_2D_array_default(self):
a = array(((1,2,3,4),
(1,2,3,4),
(1,2,3,4)))
actual = stats.gmean(a)
desired = array((1,2,3,4))
assert_array_almost_equal(actual, desired, decimal=14)
desired1 = stats.gmean(a,axis=0)
assert_array_almost_equal(actual, desired1, decimal=14)
示例15: test_2D_array_dim1
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import gmean [as 別名]
def test_2D_array_dim1(self):
a = array(((1,2,3,4),
(1,2,3,4),
(1,2,3,4)))
actual = stats.gmean(a, axis=1)
v = power(1*2*3*4,1./4.)
desired = array((v,v,v))
assert_array_almost_equal(actual, desired, decimal=14)