當前位置: 首頁>>代碼示例>>Python>>正文


Python gamma.rvs方法代碼示例

本文整理匯總了Python中scipy.stats.gamma.rvs方法的典型用法代碼示例。如果您正苦於以下問題:Python gamma.rvs方法的具體用法?Python gamma.rvs怎麽用?Python gamma.rvs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats.gamma的用法示例。


在下文中一共展示了gamma.rvs方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: gen_new_proposal

# 需要導入模塊: from scipy.stats import gamma [as 別名]
# 或者: from scipy.stats.gamma import rvs [as 別名]
def gen_new_proposal(network, funds, supply, total_funds, trigger_func):
    j = len([node for node in network.nodes])
    network.add_node(j)
    network.nodes[j]['type']="proposal"
    
    network.nodes[j]['conviction']=0
    network.nodes[j]['status']='candidate'
    network.nodes[j]['age']=0
    
    rescale = scale_factor*funds/total_funds
    r_rv = gamma.rvs(3,loc=0.001, scale=rescale)
    network.node[j]['funds_requested'] = r_rv
    
    network.nodes[j]['trigger']= trigger_func(r_rv, funds, supply)
    
    participants = get_nodes_by_type(network, 'participant')
    proposing_participant = np.random.choice(participants)
    
    for i in participants:
        network.add_edge(i, j)
        if i==proposing_participant:
            network.edges[(i, j)]['affinity']=1
        else:
            rv = np.random.rand()
            a_rv = 1-4*(1-rv)*rv #polarized distribution
            network.edges[(i, j)]['affinity'] = a_rv
            
        network.edges[(i, j)]['conviction'] = 0
        network.edges[(i,j)]['tokens'] = 0
    return network 
開發者ID:cadCAD-org,項目名稱:cadCAD,代碼行數:32,代碼來源:conviction_system_logic.py

示例2: gen_new_proposal

# 需要導入模塊: from scipy.stats import gamma [as 別名]
# 或者: from scipy.stats.gamma import rvs [as 別名]
def gen_new_proposal(network, funds, supply, trigger_func):
    j = len([node for node in network.nodes])
    network.add_node(j)
    network.nodes[j]['type']="proposal"
    
    network.nodes[j]['conviction']=0
    network.nodes[j]['status']='candidate'
    network.nodes[j]['age']=0
    
    rescale = scale_factor*funds
    r_rv = gamma.rvs(3,loc=0.001, scale=rescale)
    network.node[j]['funds_requested'] = r_rv
    
    network.nodes[j]['trigger']= trigger_func(r_rv, funds, supply)
    
    participants = get_nodes_by_type(network, 'participant')
    proposing_participant = np.random.choice(participants)
    
    for i in participants:
        network.add_edge(i, j)
        if i==proposing_participant:
            network.edges[(i, j)]['affinity']=1
        else:
            rv = np.random.rand()
            a_rv = 1-4*(1-rv)*rv #polarized distribution
            network.edges[(i, j)]['affinity'] = a_rv
            
        network.edges[(i, j)]['conviction'] = 0
        network.edges[(i,j)]['tokens'] = 0
    return network 
開發者ID:cadCAD-org,項目名稱:cadCAD,代碼行數:32,代碼來源:conviction_system_logic_sim.py

示例3: _gaussian

# 需要導入模塊: from scipy.stats import gamma [as 別名]
# 或者: from scipy.stats.gamma import rvs [as 別名]
def _gaussian(M, Rho):
    """
    Generates samples from the Gaussian Copula, w/ dependency
    matrix described by Rho.  Rho should be a numpy square matrix.
    It is assumed that we have a 0 mean.
    """
    N = Rho.shape[0]
    mu = np.zeros(N)
    y = multivariate_normal(mu,Rho)
    mvnData = y.rvs(size=M)
    U = norm.cdf(mvnData)
    
    return U 
開發者ID:stochasticresearch,項目名稱:copula-py,代碼行數:15,代碼來源:copularnd.py

示例4: _clayton

# 需要導入模塊: from scipy.stats import gamma [as 別名]
# 或者: from scipy.stats.gamma import rvs [as 別名]
def _clayton(M, N, alpha):
    if(alpha<0):
        raise ValueError('Alpha must be >=0 for Clayton Copula Family')
    if(N<2):
        raise ValueError('Dimensionality Argument [N] must be an integer >= 2')
    elif(N==2):
        u1 = uniform.rvs(size=M)
        p = uniform.rvs(size=M)
        if(alpha<np.spacing(1)):
            u2 = p
        else:
            u2 = u1*np.power((np.power(p,(-alpha/(1.0+alpha))) - 1 + np.power(u1,alpha)),(-1.0/alpha))
        
        U = np.column_stack((u1,u2))
    else:
        # Algorithm 1 described in both the SAS Copula Procedure, as well as the
        # paper: "High Dimensional Archimedean Copula Generation Algorithm"
        U = np.empty((M,N))
        for ii in range(0,M):
            shape = 1.0/alpha
            loc = 0
            scale = 1
            v = gamma.rvs(shape)
            
            # sample N independent uniform random variables
            x_i = uniform.rvs(size=N)
            t = -1*np.log(x_i)/v
            if(alpha<0):
                tmp = np.maximum(0, 1.0-t)
            else:
                tmp = 1.0 + t
            
            U[ii,:] = np.power(tmp, -1.0/alpha)

    return U 
開發者ID:stochasticresearch,項目名稱:copula-py,代碼行數:37,代碼來源:copularnd.py

示例5: _frank

# 需要導入模塊: from scipy.stats import gamma [as 別名]
# 或者: from scipy.stats.gamma import rvs [as 別名]
def _frank(M, N, alpha):
    if(N<2):
        raise ValueError('Dimensionality Argument [N] must be an integer >= 2')
    elif(N==2):        
        u1 = uniform.rvs(size=M)
        p = uniform.rvs(size=M)
        if abs(alpha) > math.log(sys.float_info.max):
            u2 = (u1 < 0).astype(int) + np.sign(alpha)*u1  # u1 or 1-u1
        elif abs(alpha) > math.sqrt(np.spacing(1)):
            u2 = -1*np.log((np.exp(-alpha*u1)*(1-p)/p + np.exp(-alpha))/(1 + np.exp(-alpha*u1)*(1-p)/p))/alpha
        else:
            u2 = p
        
        U = np.column_stack((u1,u2))
    else:
        # Algorithm 1 described in both the SAS Copula Procedure, as well as the
        # paper: "High Dimensional Archimedean Copula Generation Algorithm"
        if(alpha<=0):
            raise ValueError('For N>=3, alpha >0 in Frank Copula')
            
        U = np.empty((M,N))
        #v_vec = np.empty(M)
        for ii in range(0,M):
            p = -1.0*np.expm1(-1*alpha)
            if(p==1):
                # boundary case protection
                p = 1 - np.spacing(1)
            v = logser.rvs(p, size=1)
            #v_vec[ii] = v
            # sample N independent uniform random variables
            x_i = uniform.rvs(size=N)
            t = -1*np.log(x_i)/v
            U[ii,:] = -1.0*np.log1p( np.exp(-t)*np.expm1(-1.0*alpha))/alpha
            
        #sio.savemat('logser_v.mat', {'v':v_vec})
            
    return U 
開發者ID:stochasticresearch,項目名稱:copula-py,代碼行數:39,代碼來源:copularnd.py

示例6: generate_uncertainties

# 需要導入模塊: from scipy.stats import gamma [as 別名]
# 或者: from scipy.stats.gamma import rvs [as 別名]
def generate_uncertainties(N, dist='Gamma', rseed=None):
    """
    This function generates a uncertainties for the white noise component
    in the synthetic light curve. 
    
    Parameters
    ---------
    N: positive integer
        Lenght of the returned uncertainty vector
    dist: {'EMG', 'Gamma'}
        Probability density function (PDF) used to generate the 
        uncertainties
    rseed:
        Seed for the random number generator
        
    Returns
    -------
    s: ndarray
        Vector containing the uncertainties
    expected_s_2: float
        Expectation of the square of s computed analytically
        
    """
    np.random.seed(rseed)  
    #print(dist)
    if dist == 'EMG':  # Exponential modified Gaussian
        # the mean of a EMG rv is mu + 1/(K*sigma)
        # the variance of a EMG rv is sigma**2 + 1/(K*sigma)**2
        K = 1.824328605481941
        sigma = 0.05*0.068768312946785953
        mu = 0.05*0.87452567616276777
        # IMPORTANT NOTE
        # These parameters were obtained after fitting uncertainties
        # coming from 10,000 light curves of the VVV survey
        expected_s_2 = sigma**2 + mu**2 + 2*K*mu*sigma + 2*K**2*sigma**2 
        s = exponnorm.rvs(K, loc=mu, scale=sigma, size=N)
    elif dist == 'Gamma':
        # The mean of a gamma rv is k*sigma
        # The variance of a gamma rv is k*sigma**2
        k = 3.0
        sigma = 0.05/k  #  mean=0.05, var=0.05**2/k
        s = gamma.rvs(k, loc=0.0, scale=sigma, size=N)
        expected_s_2 = k*(1+k)*sigma**2  
    return s, expected_s_2 
開發者ID:phuijse,項目名稱:P4J,代碼行數:46,代碼來源:generator.py

示例7: driving_process

# 需要導入模塊: from scipy.stats import gamma [as 別名]
# 或者: from scipy.stats.gamma import rvs [as 別名]
def driving_process(params, step, sL, s):
    
    #placeholder plumbing for random processes
    arrival_rate = 10/s['sentiment']
    rv1 = np.random.rand()
    new_participant = bool(rv1<1/arrival_rate)
    if new_participant:
        h_rv = expon.rvs(loc=0.0, scale=1000)
        new_participant_holdings = h_rv
    else:
        new_participant_holdings = 0
    
    network = s['network']
    affinities = [network.edges[e]['affinity'] for e in network.edges ]
    median_affinity = np.median(affinities)
    
    proposals = get_nodes_by_type(network, 'proposal')
    fund_requests = [network.nodes[j]['funds_requested'] for j in proposals if network.nodes[j]['status']=='candidate' ]
    
    funds = s['funds']
    total_funds_requested = np.sum(fund_requests)
    
    proposal_rate = 10/median_affinity * total_funds_requested/funds
    rv2 = np.random.rand()
    new_proposal = bool(rv2<1/proposal_rate)
    
    sentiment = s['sentiment']
    funds = s['funds']
    scale_factor = 1+4000*sentiment**2
    
    #this shouldn't happen but expon is throwing domain errors
    if scale_factor > 1: 
        funds_arrival = expon.rvs(loc = 0, scale = scale_factor )
    else:
        funds_arrival = 0
    
    return({'new_participant':new_participant,
            'new_participant_holdings':new_participant_holdings,
            'new_proposal':new_proposal, 
            'funds_arrival':funds_arrival})

    
#Mechanisms for updating the state based on driving processes
##--- 
開發者ID:cadCAD-org,項目名稱:cadCAD,代碼行數:46,代碼來源:conviction_system_logic.py

示例8: initialize_network

# 需要導入模塊: from scipy.stats import gamma [as 別名]
# 或者: from scipy.stats.gamma import rvs [as 別名]
def initialize_network(n,m, funds_func=total_funds_given_total_supply, trigger_func =trigger_threshold ):
    network = nx.DiGraph()
    for i in range(n):
        network.add_node(i)
        network.nodes[i]['type']="participant"
        
        h_rv = expon.rvs(loc=0.0, scale=1000)
        network.nodes[i]['holdings'] = h_rv
        
        s_rv = np.random.rand() 
        network.nodes[i]['sentiment'] = s_rv
    
    participants = get_nodes_by_type(network, 'participant')
    initial_supply = np.sum([ network.nodes[i]['holdings'] for i in participants])
    
    initial_funds = funds_func(initial_supply)    
    
    #generate initial proposals
    for ind in range(m):
        j = n+ind
        network.add_node(j)
        network.nodes[j]['type']="proposal"
        network.nodes[j]['conviction']=0
        network.nodes[j]['status']='candidate'
        network.nodes[j]['age']=0
        
        r_rv = gamma.rvs(3,loc=0.001, scale=10000)
        network.node[j]['funds_requested'] = r_rv
        
        network.nodes[j]['trigger']= trigger_threshold(r_rv, initial_funds, initial_supply)
        
        for i in range(n):
            network.add_edge(i, j)
            
            rv = np.random.rand()
            a_rv = 1-4*(1-rv)*rv #polarized distribution
            network.edges[(i, j)]['affinity'] = a_rv
            network.edges[(i,j)]['tokens'] = 0
            network.edges[(i, j)]['conviction'] = 0
            
        proposals = get_nodes_by_type(network, 'proposal')
        total_requested = np.sum([ network.nodes[i]['funds_requested'] for i in proposals])
        
    return network, initial_funds, initial_supply, total_requested 
開發者ID:cadCAD-org,項目名稱:cadCAD,代碼行數:46,代碼來源:conviction_helpers.py

示例9: _gumbel

# 需要導入模塊: from scipy.stats import gamma [as 別名]
# 或者: from scipy.stats.gamma import rvs [as 別名]
def _gumbel(M, N, alpha):
    if alpha < 1:
        raise ValueError('Alpha must be >=1 for Gumbel Copula Family!')
    if(N<2):
        raise ValueError('Dimensionality Argument [N] must be an integer >= 2')
    elif(N==2):
        if alpha < (1 + math.sqrt(np.spacing(1))):
            u1 = uniform.rvs(size=M);
            u2 = uniform.rvs(size=M);
        else:
            # use the Marshal-Olkin method
            # Generate gamma as Stable(1/alpha,1), c.f. Devroye, Thm. IV.6.7
            u = (uniform.rvs(size=M) - .5) * math.pi # Generate M uniformly distributed RV's between -pi/2 and pi/2
            u2 = u + math.pi/2
            e  = -1*np.log(uniform.rvs(size=M))
            t = np.cos(u - u2/alpha)/e
            gamma = np.power(np.sin(u2/alpha)/t,(1.0/alpha)) * t/np.cos(u);
            
            # Frees&Valdez, eqn 3.5
            u1 = np.exp(-1* (np.power(-1*np.log(uniform.rvs(size=M)), 1.0/alpha) / gamma) )
            u2 = np.exp(-1* (np.power(-1*np.log(uniform.rvs(size=M)), 1.0/alpha) / gamma) )
            
        U = np.column_stack((u1,u2))
    else:
        # Algorithm 1 described in both the SAS Copula Procedure, as well as the
        # paper: "High Dimensional Archimedean Copula Generation Algorithm"
        U = np.empty((M,N))
        #v_vec = np.empty(M)
        for ii in range(0,M):
            a  = 1.0/alpha
            b  = 1
            g  = np.power(np.cos(math.pi/(2.0*alpha)), alpha)
            d  = 0
            pm = 1
            v = rstable1(1,a,b,g,d,pm)
            #v_vec[ii] = v
            # sample N independent uniform random variables
            x_i = uniform.rvs(size=N)
            t = -1*np.log(x_i)/v
            
            U[ii,:] = np.exp(-1*np.power(t, 1.0/alpha))
        
        #sio.savemat('gamma_v.mat', {'v':v_vec})
        
    return U 
開發者ID:stochasticresearch,項目名稱:copula-py,代碼行數:47,代碼來源:copularnd.py

示例10: random

# 需要導入模塊: from scipy.stats import gamma [as 別名]
# 或者: from scipy.stats.gamma import rvs [as 別名]
def random(cls, L=1, avg_mu=1.0, alphabet='nuc', pi_dirichlet_alpha=1,
               W_dirichlet_alpha=3.0, mu_gamma_alpha=3.0):
        """
        Creates a random GTR model

        Parameters
        ----------
        L : int, optional
            number of sites for which to generate a model
        avg_mu : float
           Substitution rate
        alphabet : str
           Alphabet name (should be standard: 'nuc', 'nuc_gap', 'aa', 'aa_gap')
        pi_dirichlet_alpha : float, optional
            parameter of dirichlet distribution
        W_dirichlet_alpha : float, optional
            parameter of dirichlet distribution
        mu_gamma_alpha : float, optional
            parameter of dirichlet distribution

        Returns
        -------
        GTR_site_specific
            model with randomly sampled frequencies
        """

        from scipy.stats import gamma
        alphabet=alphabets[alphabet]
        gtr = cls(alphabet=alphabet, seq_len=L)
        n = gtr.alphabet.shape[0]

        # Dirichlet distribution == l_1 normalized vector of samples of the Gamma distribution
        if pi_dirichlet_alpha:
            pi = 1.0*gamma.rvs(pi_dirichlet_alpha, size=(n,L))
        else:
            pi = np.ones((n,L))

        pi /= pi.sum(axis=0)
        if W_dirichlet_alpha:
            tmp = 1.0*gamma.rvs(W_dirichlet_alpha, size=(n,n))
        else:
            tmp = np.ones((n,n))
        tmp = np.tril(tmp,k=-1)
        W = tmp + tmp.T

        if mu_gamma_alpha:
            mu = gamma.rvs(mu_gamma_alpha, size=(L,))
        else:
            mu = np.ones(L)

        gtr.assign_rates(mu=mu, pi=pi, W=W)
        gtr.mu *= avg_mu/np.mean(gtr.average_rate())

        return gtr 
開發者ID:neherlab,項目名稱:treetime,代碼行數:56,代碼來源:gtr_site_specific.py


注:本文中的scipy.stats.gamma.rvs方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。