本文整理匯總了Python中scipy.stats.gamma.rvs方法的典型用法代碼示例。如果您正苦於以下問題:Python gamma.rvs方法的具體用法?Python gamma.rvs怎麽用?Python gamma.rvs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats.gamma
的用法示例。
在下文中一共展示了gamma.rvs方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: gen_new_proposal
# 需要導入模塊: from scipy.stats import gamma [as 別名]
# 或者: from scipy.stats.gamma import rvs [as 別名]
def gen_new_proposal(network, funds, supply, total_funds, trigger_func):
j = len([node for node in network.nodes])
network.add_node(j)
network.nodes[j]['type']="proposal"
network.nodes[j]['conviction']=0
network.nodes[j]['status']='candidate'
network.nodes[j]['age']=0
rescale = scale_factor*funds/total_funds
r_rv = gamma.rvs(3,loc=0.001, scale=rescale)
network.node[j]['funds_requested'] = r_rv
network.nodes[j]['trigger']= trigger_func(r_rv, funds, supply)
participants = get_nodes_by_type(network, 'participant')
proposing_participant = np.random.choice(participants)
for i in participants:
network.add_edge(i, j)
if i==proposing_participant:
network.edges[(i, j)]['affinity']=1
else:
rv = np.random.rand()
a_rv = 1-4*(1-rv)*rv #polarized distribution
network.edges[(i, j)]['affinity'] = a_rv
network.edges[(i, j)]['conviction'] = 0
network.edges[(i,j)]['tokens'] = 0
return network
示例2: gen_new_proposal
# 需要導入模塊: from scipy.stats import gamma [as 別名]
# 或者: from scipy.stats.gamma import rvs [as 別名]
def gen_new_proposal(network, funds, supply, trigger_func):
j = len([node for node in network.nodes])
network.add_node(j)
network.nodes[j]['type']="proposal"
network.nodes[j]['conviction']=0
network.nodes[j]['status']='candidate'
network.nodes[j]['age']=0
rescale = scale_factor*funds
r_rv = gamma.rvs(3,loc=0.001, scale=rescale)
network.node[j]['funds_requested'] = r_rv
network.nodes[j]['trigger']= trigger_func(r_rv, funds, supply)
participants = get_nodes_by_type(network, 'participant')
proposing_participant = np.random.choice(participants)
for i in participants:
network.add_edge(i, j)
if i==proposing_participant:
network.edges[(i, j)]['affinity']=1
else:
rv = np.random.rand()
a_rv = 1-4*(1-rv)*rv #polarized distribution
network.edges[(i, j)]['affinity'] = a_rv
network.edges[(i, j)]['conviction'] = 0
network.edges[(i,j)]['tokens'] = 0
return network
示例3: _gaussian
# 需要導入模塊: from scipy.stats import gamma [as 別名]
# 或者: from scipy.stats.gamma import rvs [as 別名]
def _gaussian(M, Rho):
"""
Generates samples from the Gaussian Copula, w/ dependency
matrix described by Rho. Rho should be a numpy square matrix.
It is assumed that we have a 0 mean.
"""
N = Rho.shape[0]
mu = np.zeros(N)
y = multivariate_normal(mu,Rho)
mvnData = y.rvs(size=M)
U = norm.cdf(mvnData)
return U
示例4: _clayton
# 需要導入模塊: from scipy.stats import gamma [as 別名]
# 或者: from scipy.stats.gamma import rvs [as 別名]
def _clayton(M, N, alpha):
if(alpha<0):
raise ValueError('Alpha must be >=0 for Clayton Copula Family')
if(N<2):
raise ValueError('Dimensionality Argument [N] must be an integer >= 2')
elif(N==2):
u1 = uniform.rvs(size=M)
p = uniform.rvs(size=M)
if(alpha<np.spacing(1)):
u2 = p
else:
u2 = u1*np.power((np.power(p,(-alpha/(1.0+alpha))) - 1 + np.power(u1,alpha)),(-1.0/alpha))
U = np.column_stack((u1,u2))
else:
# Algorithm 1 described in both the SAS Copula Procedure, as well as the
# paper: "High Dimensional Archimedean Copula Generation Algorithm"
U = np.empty((M,N))
for ii in range(0,M):
shape = 1.0/alpha
loc = 0
scale = 1
v = gamma.rvs(shape)
# sample N independent uniform random variables
x_i = uniform.rvs(size=N)
t = -1*np.log(x_i)/v
if(alpha<0):
tmp = np.maximum(0, 1.0-t)
else:
tmp = 1.0 + t
U[ii,:] = np.power(tmp, -1.0/alpha)
return U
示例5: _frank
# 需要導入模塊: from scipy.stats import gamma [as 別名]
# 或者: from scipy.stats.gamma import rvs [as 別名]
def _frank(M, N, alpha):
if(N<2):
raise ValueError('Dimensionality Argument [N] must be an integer >= 2')
elif(N==2):
u1 = uniform.rvs(size=M)
p = uniform.rvs(size=M)
if abs(alpha) > math.log(sys.float_info.max):
u2 = (u1 < 0).astype(int) + np.sign(alpha)*u1 # u1 or 1-u1
elif abs(alpha) > math.sqrt(np.spacing(1)):
u2 = -1*np.log((np.exp(-alpha*u1)*(1-p)/p + np.exp(-alpha))/(1 + np.exp(-alpha*u1)*(1-p)/p))/alpha
else:
u2 = p
U = np.column_stack((u1,u2))
else:
# Algorithm 1 described in both the SAS Copula Procedure, as well as the
# paper: "High Dimensional Archimedean Copula Generation Algorithm"
if(alpha<=0):
raise ValueError('For N>=3, alpha >0 in Frank Copula')
U = np.empty((M,N))
#v_vec = np.empty(M)
for ii in range(0,M):
p = -1.0*np.expm1(-1*alpha)
if(p==1):
# boundary case protection
p = 1 - np.spacing(1)
v = logser.rvs(p, size=1)
#v_vec[ii] = v
# sample N independent uniform random variables
x_i = uniform.rvs(size=N)
t = -1*np.log(x_i)/v
U[ii,:] = -1.0*np.log1p( np.exp(-t)*np.expm1(-1.0*alpha))/alpha
#sio.savemat('logser_v.mat', {'v':v_vec})
return U
示例6: generate_uncertainties
# 需要導入模塊: from scipy.stats import gamma [as 別名]
# 或者: from scipy.stats.gamma import rvs [as 別名]
def generate_uncertainties(N, dist='Gamma', rseed=None):
"""
This function generates a uncertainties for the white noise component
in the synthetic light curve.
Parameters
---------
N: positive integer
Lenght of the returned uncertainty vector
dist: {'EMG', 'Gamma'}
Probability density function (PDF) used to generate the
uncertainties
rseed:
Seed for the random number generator
Returns
-------
s: ndarray
Vector containing the uncertainties
expected_s_2: float
Expectation of the square of s computed analytically
"""
np.random.seed(rseed)
#print(dist)
if dist == 'EMG': # Exponential modified Gaussian
# the mean of a EMG rv is mu + 1/(K*sigma)
# the variance of a EMG rv is sigma**2 + 1/(K*sigma)**2
K = 1.824328605481941
sigma = 0.05*0.068768312946785953
mu = 0.05*0.87452567616276777
# IMPORTANT NOTE
# These parameters were obtained after fitting uncertainties
# coming from 10,000 light curves of the VVV survey
expected_s_2 = sigma**2 + mu**2 + 2*K*mu*sigma + 2*K**2*sigma**2
s = exponnorm.rvs(K, loc=mu, scale=sigma, size=N)
elif dist == 'Gamma':
# The mean of a gamma rv is k*sigma
# The variance of a gamma rv is k*sigma**2
k = 3.0
sigma = 0.05/k # mean=0.05, var=0.05**2/k
s = gamma.rvs(k, loc=0.0, scale=sigma, size=N)
expected_s_2 = k*(1+k)*sigma**2
return s, expected_s_2
示例7: driving_process
# 需要導入模塊: from scipy.stats import gamma [as 別名]
# 或者: from scipy.stats.gamma import rvs [as 別名]
def driving_process(params, step, sL, s):
#placeholder plumbing for random processes
arrival_rate = 10/s['sentiment']
rv1 = np.random.rand()
new_participant = bool(rv1<1/arrival_rate)
if new_participant:
h_rv = expon.rvs(loc=0.0, scale=1000)
new_participant_holdings = h_rv
else:
new_participant_holdings = 0
network = s['network']
affinities = [network.edges[e]['affinity'] for e in network.edges ]
median_affinity = np.median(affinities)
proposals = get_nodes_by_type(network, 'proposal')
fund_requests = [network.nodes[j]['funds_requested'] for j in proposals if network.nodes[j]['status']=='candidate' ]
funds = s['funds']
total_funds_requested = np.sum(fund_requests)
proposal_rate = 10/median_affinity * total_funds_requested/funds
rv2 = np.random.rand()
new_proposal = bool(rv2<1/proposal_rate)
sentiment = s['sentiment']
funds = s['funds']
scale_factor = 1+4000*sentiment**2
#this shouldn't happen but expon is throwing domain errors
if scale_factor > 1:
funds_arrival = expon.rvs(loc = 0, scale = scale_factor )
else:
funds_arrival = 0
return({'new_participant':new_participant,
'new_participant_holdings':new_participant_holdings,
'new_proposal':new_proposal,
'funds_arrival':funds_arrival})
#Mechanisms for updating the state based on driving processes
##---
示例8: initialize_network
# 需要導入模塊: from scipy.stats import gamma [as 別名]
# 或者: from scipy.stats.gamma import rvs [as 別名]
def initialize_network(n,m, funds_func=total_funds_given_total_supply, trigger_func =trigger_threshold ):
network = nx.DiGraph()
for i in range(n):
network.add_node(i)
network.nodes[i]['type']="participant"
h_rv = expon.rvs(loc=0.0, scale=1000)
network.nodes[i]['holdings'] = h_rv
s_rv = np.random.rand()
network.nodes[i]['sentiment'] = s_rv
participants = get_nodes_by_type(network, 'participant')
initial_supply = np.sum([ network.nodes[i]['holdings'] for i in participants])
initial_funds = funds_func(initial_supply)
#generate initial proposals
for ind in range(m):
j = n+ind
network.add_node(j)
network.nodes[j]['type']="proposal"
network.nodes[j]['conviction']=0
network.nodes[j]['status']='candidate'
network.nodes[j]['age']=0
r_rv = gamma.rvs(3,loc=0.001, scale=10000)
network.node[j]['funds_requested'] = r_rv
network.nodes[j]['trigger']= trigger_threshold(r_rv, initial_funds, initial_supply)
for i in range(n):
network.add_edge(i, j)
rv = np.random.rand()
a_rv = 1-4*(1-rv)*rv #polarized distribution
network.edges[(i, j)]['affinity'] = a_rv
network.edges[(i,j)]['tokens'] = 0
network.edges[(i, j)]['conviction'] = 0
proposals = get_nodes_by_type(network, 'proposal')
total_requested = np.sum([ network.nodes[i]['funds_requested'] for i in proposals])
return network, initial_funds, initial_supply, total_requested
示例9: _gumbel
# 需要導入模塊: from scipy.stats import gamma [as 別名]
# 或者: from scipy.stats.gamma import rvs [as 別名]
def _gumbel(M, N, alpha):
if alpha < 1:
raise ValueError('Alpha must be >=1 for Gumbel Copula Family!')
if(N<2):
raise ValueError('Dimensionality Argument [N] must be an integer >= 2')
elif(N==2):
if alpha < (1 + math.sqrt(np.spacing(1))):
u1 = uniform.rvs(size=M);
u2 = uniform.rvs(size=M);
else:
# use the Marshal-Olkin method
# Generate gamma as Stable(1/alpha,1), c.f. Devroye, Thm. IV.6.7
u = (uniform.rvs(size=M) - .5) * math.pi # Generate M uniformly distributed RV's between -pi/2 and pi/2
u2 = u + math.pi/2
e = -1*np.log(uniform.rvs(size=M))
t = np.cos(u - u2/alpha)/e
gamma = np.power(np.sin(u2/alpha)/t,(1.0/alpha)) * t/np.cos(u);
# Frees&Valdez, eqn 3.5
u1 = np.exp(-1* (np.power(-1*np.log(uniform.rvs(size=M)), 1.0/alpha) / gamma) )
u2 = np.exp(-1* (np.power(-1*np.log(uniform.rvs(size=M)), 1.0/alpha) / gamma) )
U = np.column_stack((u1,u2))
else:
# Algorithm 1 described in both the SAS Copula Procedure, as well as the
# paper: "High Dimensional Archimedean Copula Generation Algorithm"
U = np.empty((M,N))
#v_vec = np.empty(M)
for ii in range(0,M):
a = 1.0/alpha
b = 1
g = np.power(np.cos(math.pi/(2.0*alpha)), alpha)
d = 0
pm = 1
v = rstable1(1,a,b,g,d,pm)
#v_vec[ii] = v
# sample N independent uniform random variables
x_i = uniform.rvs(size=N)
t = -1*np.log(x_i)/v
U[ii,:] = np.exp(-1*np.power(t, 1.0/alpha))
#sio.savemat('gamma_v.mat', {'v':v_vec})
return U
示例10: random
# 需要導入模塊: from scipy.stats import gamma [as 別名]
# 或者: from scipy.stats.gamma import rvs [as 別名]
def random(cls, L=1, avg_mu=1.0, alphabet='nuc', pi_dirichlet_alpha=1,
W_dirichlet_alpha=3.0, mu_gamma_alpha=3.0):
"""
Creates a random GTR model
Parameters
----------
L : int, optional
number of sites for which to generate a model
avg_mu : float
Substitution rate
alphabet : str
Alphabet name (should be standard: 'nuc', 'nuc_gap', 'aa', 'aa_gap')
pi_dirichlet_alpha : float, optional
parameter of dirichlet distribution
W_dirichlet_alpha : float, optional
parameter of dirichlet distribution
mu_gamma_alpha : float, optional
parameter of dirichlet distribution
Returns
-------
GTR_site_specific
model with randomly sampled frequencies
"""
from scipy.stats import gamma
alphabet=alphabets[alphabet]
gtr = cls(alphabet=alphabet, seq_len=L)
n = gtr.alphabet.shape[0]
# Dirichlet distribution == l_1 normalized vector of samples of the Gamma distribution
if pi_dirichlet_alpha:
pi = 1.0*gamma.rvs(pi_dirichlet_alpha, size=(n,L))
else:
pi = np.ones((n,L))
pi /= pi.sum(axis=0)
if W_dirichlet_alpha:
tmp = 1.0*gamma.rvs(W_dirichlet_alpha, size=(n,n))
else:
tmp = np.ones((n,n))
tmp = np.tril(tmp,k=-1)
W = tmp + tmp.T
if mu_gamma_alpha:
mu = gamma.rvs(mu_gamma_alpha, size=(L,))
else:
mu = np.ones(L)
gtr.assign_rates(mu=mu, pi=pi, W=W)
gtr.mu *= avg_mu/np.mean(gtr.average_rate())
return gtr