本文整理匯總了Python中scipy.stats.fisher_exact方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.fisher_exact方法的具體用法?Python stats.fisher_exact怎麽用?Python stats.fisher_exact使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats
的用法示例。
在下文中一共展示了stats.fisher_exact方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_precise
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import fisher_exact [as 別名]
def test_precise(self):
# results from R
#
# R defines oddsratio differently (see Notes section of fisher_exact
# docstring), so those will not match. We leave them in anyway, in
# case they will be useful later on. We test only the p-value.
tablist = [
([[100, 2], [1000, 5]], (2.505583993422285e-001, 1.300759363430016e-001)),
([[2, 7], [8, 2]], (8.586235135736206e-002, 2.301413756522114e-002)),
([[5, 1], [10, 10]], (4.725646047336584e+000, 1.973244147157190e-001)),
([[5, 15], [20, 20]], (3.394396617440852e-001, 9.580440012477637e-002)),
([[5, 16], [20, 25]], (3.960558326183334e-001, 1.725864953812994e-001)),
([[10, 5], [10, 1]], (2.116112781158483e-001, 1.973244147157190e-001)),
([[10, 5], [10, 0]], (0.000000000000000e+000, 6.126482213438734e-002)),
([[5, 0], [1, 4]], (np.inf, 4.761904761904762e-002)),
([[0, 5], [1, 4]], (0.000000000000000e+000, 1.000000000000000e+000)),
([[5, 1], [0, 4]], (np.inf, 4.761904761904758e-002)),
([[0, 1], [3, 2]], (0.000000000000000e+000, 1.000000000000000e+000))
]
for table, res_r in tablist:
res = stats.fisher_exact(np.asarray(table))
np.testing.assert_almost_equal(res[1], res_r[1], decimal=11,
verbose=True)
示例2: fisher_exact_test
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import fisher_exact [as 別名]
def fisher_exact_test(pDataFile1, pDataFile2, pAlpha):
test_result = []
accepted = []
rejected = []
for i, (group1, group2) in enumerate(zip(pDataFile1, pDataFile2)):
try:
odds, p_value = stats.fisher_exact(np.ceil([group1, group2]))
if p_value <= pAlpha:
test_result.append(p_value)
rejected.append([i, p_value])
else:
test_result.append(p_value)
accepted.append([i, p_value])
except ValueError:
test_result.append(np.nan)
accepted.append([i, 1.0])
return test_result, accepted, rejected
示例3: doTargetPrediction
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import fisher_exact [as 別名]
def doTargetPrediction(pickled_model_name):
if os.name == 'nt': sep = '\\'
else: sep = '/'
mod = pickled_model_name.split(sep)[-1].split('.')[0]
clf = open_Model(mod)
probs1 = map(int, clf.predict_proba(querymatrix1)[:,1] > threshold)
preds1 = sum(probs1)
probs2 = map(int, clf.predict_proba(querymatrix2)[:,1] > threshold)
preds2 = sum(probs2)
oddsratio, pvalue = stats.fisher_exact([[preds2,len(querymatrix2)-preds2],[preds1,len(querymatrix1)-preds1]])
try:
ratio, preds1_percentage, preds2_percentage = calcPredictionRatio(preds1,preds2)
return ratio, mod, preds1, preds1_percentage, preds2, preds2_percentage, oddsratio, pvalue, probs1 + probs2
except TypeError: return None
#prediction runner
示例4: run
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import fisher_exact [as 別名]
def run(self):
A = self.GenesWith & self.foreground
B = self.GenesWithout & self.foreground
C = self.GenesWith & self.background
D = self.GenesWithout & self.background
fishlist = ((len(A), len(B)), (len(C), len(D)))
FT = stats.fisher_exact(fishlist)
OR, p = FT
padj = self.correct(p)
if padj > 1:
padj = 1
significant = self.sig(padj)
return OR, p, padj, significant, fishlist, A, C
# functions below here correspond to specific steps in the
# pipeline_enrichment pipeline - they are written as functions
# so the cluster_runnable decorater can be used.
示例5: old_method
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import fisher_exact [as 別名]
def old_method(a_range, b_range, bed):
from scipy.stats import fisher_exact
def meth_counts(interval):
if not interval.empty:
all, methylated = interval.as_df()[['calls', "methylated"]].sum()
return [all - methylated, methylated]
else:
return [0, 0]
rowdicts = []
for chr, begin, end in bed.merge().as_df().itertuples(index=False, name=None):
[d1, n1], [d2, n2] = meth_counts(
a_range[chr, begin:end]), meth_counts(b_range[chr, begin:end])
rowdicts.append({"Chromosome": chr, "Start": begin, "End": end,
"d1": d1, "d2": d2, "n1": n1, "n2": n2})
# print(c1, c2)
# print(a, b, c, d)
# odr, pv = fisher_exact([c1, c2])
# print(odr, pv)
# rowdicts.append({"Chromosome": chr, "Start": begin, "End": end, "OR": odr, "P": pv})
return pd.DataFrame.from_dict(rowdicts)
示例6: fisher_exact
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import fisher_exact [as 別名]
def fisher_exact(*_args, **_kwargs):
raise NotImplementedError
### Indices to marginals arguments:
示例7: fisher
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import fisher_exact [as 別名]
def fisher(cls, *marginals):
"""Scores bigrams using Fisher's Exact Test (Pedersen 1996). Less
sensitive to small counts than PMI or Chi Sq, but also more expensive
to compute. Requires scipy.
"""
n_ii, n_io, n_oi, n_oo = cls._contingency(*marginals)
(odds, pvalue) = fisher_exact([[n_ii, n_io], [n_oi, n_oo]], alternative='less')
return pvalue
示例8: _get_fisher_scores_from_counts
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import fisher_exact [as 別名]
def _get_fisher_scores_from_counts(self, cat_word_counts, not_cat_word_counts):
cat_not_word_counts = cat_word_counts.sum() - cat_word_counts
not_cat_not_word_counts = not_cat_word_counts.sum() - not_cat_word_counts
def do_fisher_exact(x):
return fisher_exact([[x[0], x[1]], [x[2], x[3]]], alternative='greater')
odds_ratio, p_values = np.apply_along_axis(
do_fisher_exact,
0,
np.array([cat_word_counts, cat_not_word_counts, not_cat_word_counts, not_cat_not_word_counts]))
return odds_ratio, p_values
示例9: _test_group
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import fisher_exact [as 別名]
def _test_group(pvalues, group_name, group, exact=True):
"""test if the objects in the group are different from the general set.
The test is performed on the pvalues set (ad a pandas series) over
the group specified via a fisher exact test.
"""
from scipy.stats import fisher_exact, chi2_contingency
totals = 1.0 * len(pvalues)
total_significant = 1.0 * np.sum(pvalues)
cross_index = [c for c in group if c in pvalues.index]
missing = [c for c in group if c not in pvalues.index]
if missing:
s = ('the test is not well defined if the group '
'has elements not presents in the significativity '
'array. group name: {}, missing elements: {}')
logging.warning(s.format(group_name, missing))
# how many are significant and not in the group
group_total = 1.0 * len(cross_index)
group_sign = 1.0 * len([c for c in cross_index if pvalues[c]])
group_nonsign = 1.0 * (group_total - group_sign)
# how many are significant and not outside the group
extern_sign = 1.0 * (total_significant - group_sign)
extern_nonsign = 1.0 * (totals - total_significant - group_nonsign)
# make the fisher test or the chi squared
test = fisher_exact if exact else chi2_contingency
table = [[extern_nonsign, extern_sign], [group_nonsign, group_sign]]
pvalue = test(np.array(table))[1]
# is the group more represented or less?
part = group_sign, group_nonsign, extern_sign, extern_nonsign
#increase = (group_sign / group_total) > (total_significant / totals)
increase = np.log((totals * group_sign)
/ (total_significant * group_total))
return pvalue, increase, part
示例10: test_basic
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import fisher_exact [as 別名]
def test_basic(self):
fisher_exact = stats.fisher_exact
res = fisher_exact([[14500, 20000], [30000, 40000]])[1]
assert_approx_equal(res, 0.01106, significant=4)
res = fisher_exact([[100, 2], [1000, 5]])[1]
assert_approx_equal(res, 0.1301, significant=4)
res = fisher_exact([[2, 7], [8, 2]])[1]
assert_approx_equal(res, 0.0230141, significant=6)
res = fisher_exact([[5, 1], [10, 10]])[1]
assert_approx_equal(res, 0.1973244, significant=6)
res = fisher_exact([[5, 15], [20, 20]])[1]
assert_approx_equal(res, 0.0958044, significant=6)
res = fisher_exact([[5, 16], [20, 25]])[1]
assert_approx_equal(res, 0.1725862, significant=6)
res = fisher_exact([[10, 5], [10, 1]])[1]
assert_approx_equal(res, 0.1973244, significant=6)
res = fisher_exact([[5, 0], [1, 4]])[1]
assert_approx_equal(res, 0.04761904, significant=6)
res = fisher_exact([[0, 1], [3, 2]])[1]
assert_approx_equal(res, 1.0)
res = fisher_exact([[0, 2], [6, 4]])[1]
assert_approx_equal(res, 0.4545454545)
res = fisher_exact([[2, 7], [8, 2]])
assert_approx_equal(res[1], 0.0230141, significant=6)
assert_approx_equal(res[0], 4.0 / 56)
示例11: test_large_numbers
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import fisher_exact [as 別名]
def test_large_numbers(self):
# Test with some large numbers. Regression test for #1401
pvals = [5.56e-11, 2.666e-11, 1.363e-11] # from R
for pval, num in zip(pvals, [75, 76, 77]):
res = stats.fisher_exact([[17704, 496], [1065, num]])[1]
assert_approx_equal(res, pval, significant=4)
res = stats.fisher_exact([[18000, 80000], [20000, 90000]])[1]
assert_approx_equal(res, 0.2751, significant=4)
示例12: test_raises
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import fisher_exact [as 別名]
def test_raises(self):
# test we raise an error for wrong shape of input.
assert_raises(ValueError, stats.fisher_exact,
np.arange(6).reshape(2, 3))
示例13: test_row_or_col_zero
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import fisher_exact [as 別名]
def test_row_or_col_zero(self):
tables = ([[0, 0], [5, 10]],
[[5, 10], [0, 0]],
[[0, 5], [0, 10]],
[[5, 0], [10, 0]])
for table in tables:
oddsratio, pval = stats.fisher_exact(table)
assert_equal(pval, 1.0)
assert_equal(oddsratio, np.nan)
示例14: doTargetPrediction
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import fisher_exact [as 別名]
def doTargetPrediction(pickled_model_name):
if os.name == 'nt': sep = '\\'
else: sep = '/'
mod = pickled_model_name.split(sep)[-1].split('.')[0]
clf = open_Model(mod)
probs1 = map(int, clf.predict_proba(querymatrix1)[:,1] > threshold)
preds1 = sum(probs1)
preds2 = bg_preds[mod]
oddsratio, pvalue = stats.fisher_exact([[preds2,2000000-preds2],[preds1,len(querymatrix1)-preds1]])
try:
ratio, preds1_percentage, preds2_percentage = calcPredictionRatio(preds1,preds2)
return ratio, mod, preds1, preds1_percentage, preds2, preds2_percentage, oddsratio, pvalue, probs1
except TypeError: return None
#prediction runner
示例15: test_gh3014
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import fisher_exact [as 別名]
def test_gh3014(self):
# check if issue #3014 has been fixed.
# before, this would have risen a ValueError
odds, pvalue = stats.fisher_exact([[1, 2], [9, 84419233]])