本文整理匯總了Python中scipy.stats.distributions.norm.cdf方法的典型用法代碼示例。如果您正苦於以下問題:Python norm.cdf方法的具體用法?Python norm.cdf怎麽用?Python norm.cdf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats.distributions.norm
的用法示例。
在下文中一共展示了norm.cdf方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _ecdf
# 需要導入模塊: from scipy.stats.distributions import norm [as 別名]
# 或者: from scipy.stats.distributions.norm import cdf [as 別名]
def _ecdf(x):
'''no frills empirical cdf used in fdrcorrection
'''
nobs = len(x)
return np.arange(1, nobs + 1) / float(nobs)
示例2: compare_medians_ms
# 需要導入模塊: from scipy.stats.distributions import norm [as 別名]
# 或者: from scipy.stats.distributions.norm import cdf [as 別名]
def compare_medians_ms(group_1, group_2, axis=None):
"""
Compares the medians from two independent groups along the given axis.
The comparison is performed using the McKean-Schrader estimate of the
standard error of the medians.
Parameters
----------
group_1 : array_like
First dataset. Has to be of size >=7.
group_2 : array_like
Second dataset. Has to be of size >=7.
axis : int, optional
Axis along which the medians are estimated. If None, the arrays are
flattened. If `axis` is not None, then `group_1` and `group_2`
should have the same shape.
Returns
-------
compare_medians_ms : {float, ndarray}
If `axis` is None, then returns a float, otherwise returns a 1-D
ndarray of floats with a length equal to the length of `group_1`
along `axis`.
"""
(med_1, med_2) = (ma.median(group_1,axis=axis), ma.median(group_2,axis=axis))
(std_1, std_2) = (mstats.stde_median(group_1, axis=axis),
mstats.stde_median(group_2, axis=axis))
W = np.abs(med_1 - med_2) / ma.sqrt(std_1**2 + std_2**2)
return 1 - norm.cdf(W)
示例3: generate_logistic
# 需要導入模塊: from scipy.stats.distributions import norm [as 別名]
# 或者: from scipy.stats.distributions.norm import cdf [as 別名]
def generate_logistic():
# Number of clusters
nclust = 100
# Regression coefficients
beta = np.array([1,-2,1], dtype=np.float64)
## Covariate correlations
r = 0.4
## Cluster effects of covariates
rx = 0.5
## Within-cluster outcome dependence
re = 0.3
p = len(beta)
OUT = open("gee_logistic_1.csv", "w")
for i in range(nclust):
n = np.random.randint(3, 6) # Cluster size
x = np.random.normal(size=(n,p))
x = rx*np.random.normal() + np.sqrt(1-rx**2)*x
x[:,2] = r*x[:,1] + np.sqrt(1-r**2)*x[:,2]
pr = 1/(1+np.exp(-np.dot(x, beta)))
z = re*np.random.normal() +\
np.sqrt(1-re**2)*np.random.normal(size=n)
u = norm.cdf(z)
y = 1*(u < pr)
for j in range(n):
OUT.write("%d,%d," % (i, y[j]))
OUT.write(",".join(["%.3f" % b for b in x[j,:]]) + "\n")
OUT.close()
示例4: generate_ordinal
# 需要導入模塊: from scipy.stats.distributions import norm [as 別名]
# 或者: from scipy.stats.distributions.norm import cdf [as 別名]
def generate_ordinal():
## Regression coefficients
beta = np.zeros(5, dtype=np.float64)
beta[2] = 1
beta[4] = -1
rz = 0.5
OUT = open("gee_ordinal_1.csv", "w")
for i in range(200):
n = np.random.randint(3, 6) # Cluster size
x = np.random.normal(size=(n,5))
for j in range(5):
x[:,j] += np.random.normal()
pr = np.dot(x, beta)
pr = np.array([1,0,-0.5]) + pr[:,None]
pr = 1 / (1 + np.exp(-pr))
z = rz*np.random.normal() +\
np.sqrt(1-rz**2)*np.random.normal(size=n)
u = norm.cdf(z)
y = (u[:,None] > pr).sum(1)
for j in range(n):
OUT.write("%d,%d," % (i, y[j]))
OUT.write(",".join(["%.3f" % b for b in x[j,:]]) + "\n")
OUT.close()
示例5: generate_nominal
# 需要導入模塊: from scipy.stats.distributions import norm [as 別名]
# 或者: from scipy.stats.distributions.norm import cdf [as 別名]
def generate_nominal():
## Regression coefficients
beta1 = np.r_[0.5, 0.5]
beta2 = np.r_[-1, -0.5]
p = len(beta1)
rz = 0.5
OUT = open("gee_nominal_1.csv", "w")
for i in range(200):
n = np.random.randint(3, 6) # Cluster size
x = np.random.normal(size=(n,p))
x[:,0] = 1
for j in range(1,x.shape[1]):
x[:,j] += np.random.normal()
pr1 = np.exp(np.dot(x, beta1))[:,None]
pr2 = np.exp(np.dot(x, beta2))[:,None]
den = 1 + pr1 + pr2
pr = np.hstack((pr1/den, pr2/den, 1/den))
cpr = np.cumsum(pr, 1)
z = rz*np.random.normal() +\
np.sqrt(1-rz**2)*np.random.normal(size=n)
u = norm.cdf(z)
y = (u[:,None] > cpr).sum(1)
for j in range(n):
OUT.write("%d,%d," % (i, y[j]))
OUT.write(",".join(["%.3f" % b for b in x[j,:]]) + "\n")
OUT.close()
示例6: _ecdf
# 需要導入模塊: from scipy.stats.distributions import norm [as 別名]
# 或者: from scipy.stats.distributions.norm import cdf [as 別名]
def _ecdf(x):
'''no frills empirical cdf used in fdrcorrection
'''
nobs = len(x)
return np.arange(1,nobs+1)/float(nobs)
示例7: compare_medians_ms
# 需要導入模塊: from scipy.stats.distributions import norm [as 別名]
# 或者: from scipy.stats.distributions.norm import cdf [as 別名]
def compare_medians_ms(group_1, group_2, axis=None):
"""
Compares the medians from two independent groups along the given axis.
The comparison is performed using the McKean-Schrader estimate of the
standard error of the medians.
Parameters
----------
group_1 : array_like
First dataset.
group_2 : array_like
Second dataset.
axis : int, optional
Axis along which the medians are estimated. If None, the arrays are
flattened. If `axis` is not None, then `group_1` and `group_2`
should have the same shape.
Returns
-------
compare_medians_ms : {float, ndarray}
If `axis` is None, then returns a float, otherwise returns a 1-D
ndarray of floats with a length equal to the length of `group_1`
along `axis`.
"""
(med_1, med_2) = (ma.median(group_1,axis=axis), ma.median(group_2,axis=axis))
(std_1, std_2) = (mstats.stde_median(group_1, axis=axis),
mstats.stde_median(group_2, axis=axis))
W = np.abs(med_1 - med_2) / ma.sqrt(std_1**2 + std_2**2)
return 1 - norm.cdf(W)
示例8: get_candidate_window2
# 需要導入模塊: from scipy.stats.distributions import norm [as 別名]
# 或者: from scipy.stats.distributions.norm import cdf [as 別名]
def get_candidate_window2( x, y, repx, repy, threshold):
# using PHI = 1e6 to prescreen the genome
PHI = 1e6
GAMMA_HAT = 1.0
tau = numpy.sqrt( y*( repx*x*(PHI+y) + repy*y*(PHI+x))/repx/repy/PHI/x**3)
gamma = y/x
z = (numpy.log(gamma)-numpy.log(GAMMA_HAT))*gamma/tau
pvalue = norm.cdf(-z)
pre_idx_list = numpy.where(pvalue[10:-10]<threshold)[0]+10
return numpy.array(pre_idx_list)
示例9: hdquantiles_sd
# 需要導入模塊: from scipy.stats.distributions import norm [as 別名]
# 或者: from scipy.stats.distributions.norm import cdf [as 別名]
def hdquantiles_sd(data, prob=list([.25,.5,.75]), axis=None):
"""
The standard error of the Harrell-Davis quantile estimates by jackknife.
Parameters
----------
data : array_like
Data array.
prob : sequence, optional
Sequence of quantiles to compute.
axis : int, optional
Axis along which to compute the quantiles. If None, use a flattened
array.
Returns
-------
hdquantiles_sd : MaskedArray
Standard error of the Harrell-Davis quantile estimates.
See Also
--------
hdquantiles
"""
def _hdsd_1D(data, prob):
"Computes the std error for 1D arrays."
xsorted = np.sort(data.compressed())
n = len(xsorted)
hdsd = np.empty(len(prob), float_)
if n < 2:
hdsd.flat = np.nan
vv = np.arange(n) / float(n-1)
betacdf = beta.cdf
for (i,p) in enumerate(prob):
_w = betacdf(vv, (n+1)*p, (n+1)*(1-p))
w = _w[1:] - _w[:-1]
mx_ = np.fromiter([np.dot(w,xsorted[np.r_[list(range(0,k)),
list(range(k+1,n))].astype(int_)])
for k in range(n)], dtype=float_)
mx_var = np.array(mx_.var(), copy=False, ndmin=1) * n / float(n-1)
hdsd[i] = float(n-1) * np.sqrt(np.diag(mx_var).diagonal() / float(n))
return hdsd
# Initialization & checks
data = ma.array(data, copy=False, dtype=float_)
p = np.array(prob, copy=False, ndmin=1)
# Computes quantiles along axis (or globally)
if (axis is None):
result = _hdsd_1D(data, p)
else:
if data.ndim > 2:
raise ValueError("Array 'data' must be at most two dimensional, "
"but got data.ndim = %d" % data.ndim)
result = ma.apply_along_axis(_hdsd_1D, axis, data, p)
return ma.fix_invalid(result, copy=False).ravel()
示例10: mjci
# 需要導入模塊: from scipy.stats.distributions import norm [as 別名]
# 或者: from scipy.stats.distributions.norm import cdf [as 別名]
def mjci(data, prob=[0.25,0.5,0.75], axis=None):
"""
Returns the Maritz-Jarrett estimators of the standard error of selected
experimental quantiles of the data.
Parameters
----------
data : ndarray
Data array.
prob : sequence, optional
Sequence of quantiles to compute.
axis : int or None, optional
Axis along which to compute the quantiles. If None, use a flattened
array.
"""
def _mjci_1D(data, p):
data = np.sort(data.compressed())
n = data.size
prob = (np.array(p) * n + 0.5).astype(int_)
betacdf = beta.cdf
mj = np.empty(len(prob), float_)
x = np.arange(1,n+1, dtype=float_) / n
y = x - 1./n
for (i,m) in enumerate(prob):
W = betacdf(x,m-1,n-m) - betacdf(y,m-1,n-m)
C1 = np.dot(W,data)
C2 = np.dot(W,data**2)
mj[i] = np.sqrt(C2 - C1**2)
return mj
data = ma.array(data, copy=False)
if data.ndim > 2:
raise ValueError("Array 'data' must be at most two dimensional, "
"but got data.ndim = %d" % data.ndim)
p = np.array(prob, copy=False, ndmin=1)
# Computes quantiles along axis (or globally)
if (axis is None):
return _mjci_1D(data, p)
else:
return ma.apply_along_axis(_mjci_1D, axis, data, p)
示例11: median_cihs
# 需要導入模塊: from scipy.stats.distributions import norm [as 別名]
# 或者: from scipy.stats.distributions.norm import cdf [as 別名]
def median_cihs(data, alpha=0.05, axis=None):
"""
Computes the alpha-level confidence interval for the median of the data.
Uses the Hettmasperger-Sheather method.
Parameters
----------
data : array_like
Input data. Masked values are discarded. The input should be 1D only,
or `axis` should be set to None.
alpha : float, optional
Confidence level of the intervals.
axis : int or None, optional
Axis along which to compute the quantiles. If None, use a flattened
array.
Returns
-------
median_cihs
Alpha level confidence interval.
"""
def _cihs_1D(data, alpha):
data = np.sort(data.compressed())
n = len(data)
alpha = min(alpha, 1-alpha)
k = int(binom._ppf(alpha/2., n, 0.5))
gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5)
if gk < 1-alpha:
k -= 1
gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5)
gkk = binom.cdf(n-k-1,n,0.5) - binom.cdf(k,n,0.5)
I = (gk - 1 + alpha)/(gk - gkk)
lambd = (n-k) * I / float(k + (n-2*k)*I)
lims = (lambd*data[k] + (1-lambd)*data[k-1],
lambd*data[n-k-1] + (1-lambd)*data[n-k])
return lims
data = ma.array(data, copy=False)
# Computes quantiles along axis (or globally)
if (axis is None):
result = _cihs_1D(data, alpha)
else:
if data.ndim > 2:
raise ValueError("Array 'data' must be at most two dimensional, "
"but got data.ndim = %d" % data.ndim)
result = ma.apply_along_axis(_cihs_1D, axis, data, alpha)
return result
示例12: test_scoretest
# 需要導入模塊: from scipy.stats.distributions import norm [as 別名]
# 或者: from scipy.stats.distributions.norm import cdf [as 別名]
def test_scoretest(self):
# Regression tests
np.random.seed(6432)
n = 200 # Must be divisible by 4
exog = np.random.normal(size=(n, 4))
endog = exog[:, 0] + exog[:, 1] + exog[:, 2]
endog += 3 * np.random.normal(size=n)
group = np.kron(np.arange(n / 4), np.ones(4))
# Test under the null.
L = np.array([[1., -1, 0, 0]])
R = np.array([0., ])
family = Gaussian()
va = Independence()
mod1 = GEE(endog, exog, group, family=family,
cov_struct=va, constraint=(L, R))
mod1.fit()
assert_almost_equal(mod1.score_test_results["statistic"],
1.08126334)
assert_almost_equal(mod1.score_test_results["p-value"],
0.2984151086)
# Test under the alternative.
L = np.array([[1., -1, 0, 0]])
R = np.array([1.0, ])
family = Gaussian()
va = Independence()
mod2 = GEE(endog, exog, group, family=family,
cov_struct=va, constraint=(L, R))
mod2.fit()
assert_almost_equal(mod2.score_test_results["statistic"],
3.491110965)
assert_almost_equal(mod2.score_test_results["p-value"],
0.0616991659)
# Compare to Wald tests
exog = np.random.normal(size=(n, 2))
L = np.array([[1, -1]])
R = np.array([0.])
f = np.r_[1, -1]
for i in range(10):
endog = exog[:, 0] + (0.5 + i / 10.) * exog[:, 1] +\
np.random.normal(size=n)
family = Gaussian()
va = Independence()
mod0 = GEE(endog, exog, group, family=family,
cov_struct=va)
rslt0 = mod0.fit()
family = Gaussian()
va = Independence()
mod1 = GEE(endog, exog, group, family=family,
cov_struct=va, constraint=(L, R))
mod1.fit()
se = np.sqrt(np.dot(f, np.dot(rslt0.cov_params(), f)))
wald_z = np.dot(f, rslt0.params) / se
wald_p = 2 * norm.cdf(-np.abs(wald_z))
score_p = mod1.score_test_results["p-value"]
assert_array_less(np.abs(wald_p - score_p), 0.02)
示例13: hdquantiles_sd
# 需要導入模塊: from scipy.stats.distributions import norm [as 別名]
# 或者: from scipy.stats.distributions.norm import cdf [as 別名]
def hdquantiles_sd(data, prob=list([.25,.5,.75]), axis=None):
"""
The standard error of the Harrell-Davis quantile estimates by jackknife.
Parameters
----------
data : array_like
Data array.
prob : sequence
Sequence of quantiles to compute.
axis : int
Axis along which to compute the quantiles. If None, use a flattened
array.
Returns
-------
hdquantiles_sd : MaskedArray
Standard error of the Harrell-Davis quantile estimates.
"""
def _hdsd_1D(data,prob):
"Computes the std error for 1D arrays."
xsorted = np.sort(data.compressed())
n = len(xsorted)
#.........
hdsd = np.empty(len(prob), float_)
if n < 2:
hdsd.flat = np.nan
#.........
vv = np.arange(n) / float(n-1)
betacdf = beta.cdf
#
for (i,p) in enumerate(prob):
_w = betacdf(vv, (n+1)*p, (n+1)*(1-p))
w = _w[1:] - _w[:-1]
mx_ = np.fromiter([np.dot(w,xsorted[np.r_[list(range(0,k)),
list(range(k+1,n))].astype(int_)])
for k in range(n)], dtype=float_)
mx_var = np.array(mx_.var(), copy=False, ndmin=1) * n / float(n-1)
hdsd[i] = float(n-1) * np.sqrt(np.diag(mx_var).diagonal() / float(n))
return hdsd
# Initialization & checks ---------
data = ma.array(data, copy=False, dtype=float_)
p = np.array(prob, copy=False, ndmin=1)
# Computes quantiles along axis (or globally)
if (axis is None):
result = _hdsd_1D(data, p)
else:
if data.ndim > 2:
raise ValueError("Array 'data' must be at most two dimensional, but got data.ndim = %d" % data.ndim)
result = ma.apply_along_axis(_hdsd_1D, axis, data, p)
#
return ma.fix_invalid(result, copy=False).ravel()
#####--------------------------------------------------------------------------
#---- --- Confidence intervals ---
#####--------------------------------------------------------------------------
示例14: mjci
# 需要導入模塊: from scipy.stats.distributions import norm [as 別名]
# 或者: from scipy.stats.distributions.norm import cdf [as 別名]
def mjci(data, prob=[0.25,0.5,0.75], axis=None):
"""
Returns the Maritz-Jarrett estimators of the standard error of selected
experimental quantiles of the data.
Parameters
----------
data: ndarray
Data array.
prob: sequence
Sequence of quantiles to compute.
axis : int
Axis along which to compute the quantiles. If None, use a flattened
array.
"""
def _mjci_1D(data, p):
data = np.sort(data.compressed())
n = data.size
prob = (np.array(p) * n + 0.5).astype(int_)
betacdf = beta.cdf
#
mj = np.empty(len(prob), float_)
x = np.arange(1,n+1, dtype=float_) / n
y = x - 1./n
for (i,m) in enumerate(prob):
(m1,m2) = (m-1, n-m)
W = betacdf(x,m-1,n-m) - betacdf(y,m-1,n-m)
C1 = np.dot(W,data)
C2 = np.dot(W,data**2)
mj[i] = np.sqrt(C2 - C1**2)
return mj
#
data = ma.array(data, copy=False)
if data.ndim > 2:
raise ValueError("Array 'data' must be at most two dimensional, but got data.ndim = %d" % data.ndim)
p = np.array(prob, copy=False, ndmin=1)
# Computes quantiles along axis (or globally)
if (axis is None):
return _mjci_1D(data, p)
else:
return ma.apply_along_axis(_mjci_1D, axis, data, p)
#..............................................................................
示例15: median_cihs
# 需要導入模塊: from scipy.stats.distributions import norm [as 別名]
# 或者: from scipy.stats.distributions.norm import cdf [as 別名]
def median_cihs(data, alpha=0.05, axis=None):
"""
Computes the alpha-level confidence interval for the median of the data.
Uses the Hettmasperger-Sheather method.
Parameters
----------
data : array_like
Input data. Masked values are discarded. The input should be 1D only,
or `axis` should be set to None.
alpha : float
Confidence level of the intervals.
axis : integer
Axis along which to compute the quantiles. If None, use a flattened
array.
Returns
-------
median_cihs :
Alpha level confidence interval.
"""
def _cihs_1D(data, alpha):
data = np.sort(data.compressed())
n = len(data)
alpha = min(alpha, 1-alpha)
k = int(binom._ppf(alpha/2., n, 0.5))
gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5)
if gk < 1-alpha:
k -= 1
gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5)
gkk = binom.cdf(n-k-1,n,0.5) - binom.cdf(k,n,0.5)
I = (gk - 1 + alpha)/(gk - gkk)
lambd = (n-k) * I / float(k + (n-2*k)*I)
lims = (lambd*data[k] + (1-lambd)*data[k-1],
lambd*data[n-k-1] + (1-lambd)*data[n-k])
return lims
data = ma.rray(data, copy=False)
# Computes quantiles along axis (or globally)
if (axis is None):
result = _cihs_1D(data.compressed(), alpha)
else:
if data.ndim > 2:
raise ValueError("Array 'data' must be at most two dimensional, but got data.ndim = %d" % data.ndim)
result = ma.apply_along_axis(_cihs_1D, axis, data, alpha)
#
return result
#..............................................................................