本文整理匯總了Python中scipy.stats.chisquare方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.chisquare方法的具體用法?Python stats.chisquare怎麽用?Python stats.chisquare使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats
的用法示例。
在下文中一共展示了stats.chisquare方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_univariate_categorical
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chisquare [as 別名]
def test_univariate_categorical():
# This test generates univariate data from a nominal variable with 6 levels
# and probability vector p_theory, and performs a chi-square test on
# posterior samples from MvKde.
rng = gu.gen_rng(2)
N_SAMPLES = 1000
p_theory = [.3, .1, .2, .15, .15, .1]
samples_test = rng.choice(range(6), p=p_theory, size=N_SAMPLES)
kde = MultivariateKde(
[7], None, distargs={O: {ST: [C], SA:[{'k': 6}]}}, rng=rng)
# Incorporate observations.
for rowid, x in enumerate(samples_test):
kde.incorporate(rowid, {7: x})
kde.transition()
# Posterior samples.
samples_gen = kde.simulate(-1, [7], N=N_SAMPLES)
f_obs = np.bincount([s[7] for s in samples_gen])
f_exp = np.bincount(samples_test)
_, pval = chisquare(f_obs, f_exp)
assert 0.05 < pval
# Get some coverage on logpdf_score.
assert kde.logpdf_score() < 0
示例2: check_power_divergence
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chisquare [as 別名]
def check_power_divergence(self, f_obs, f_exp, ddof, axis, lambda_,
expected_stat):
f_obs = np.asarray(f_obs)
if axis is None:
num_obs = f_obs.size
else:
b = np.broadcast(f_obs, f_exp)
num_obs = b.shape[axis]
stat, p = stats.power_divergence(f_obs=f_obs, f_exp=f_exp, ddof=ddof,
axis=axis, lambda_=lambda_)
assert_allclose(stat, expected_stat)
if lambda_ == 1 or lambda_ == "pearson":
# Also test stats.chisquare.
stat, p = stats.chisquare(f_obs=f_obs, f_exp=f_exp, ddof=ddof,
axis=axis)
assert_allclose(stat, expected_stat)
ddof = np.asarray(ddof)
expected_p = stats.chisqprob(expected_stat, num_obs - 1 - ddof)
assert_allclose(p, expected_p)
示例3: test_discrete_random
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chisquare [as 別名]
def test_discrete_random(self):
"""...Test discrete random numbers simulation
"""
probabilities = np.array([2.0, 0.1, 3, 5, 7])
seeded_sample = [2., 3., 3., 0., 4.]
self._test_dist_with_seed(seeded_sample, test_discrete, probabilities,
discrete=True)
# Statistical tests
sample = test_discrete(probabilities, self.stat_size, self.test_seed)
f_obs = [sum(sample == i) for i in range(len(probabilities))]
_, p = stats.chisquare(f_exp=probabilities, f_obs=f_obs)
self.assertLess(p, 0.05)
# Test that variable event with probability 0 never happens
probabilities_zero = probabilities.copy()
probabilities_zero[1] = 0
sample = test_discrete(probabilities_zero, self.stat_size,
self.test_seed)
self.assertEqual(sum(sample == 1), 0)
示例4: test_even_mixing
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chisquare [as 別名]
def test_even_mixing(verbose=True):
"""
Testing Cython mixing code with 1000 swap attempts and uniform 0 energies
"""
if verbose: print("Testing Cython mixing code with uniform zero energies")
n_swaps = 1000
n_states = 16
corrected_threshold = 0.001 / n_states
permutation_list = mix_replicas(n_swaps=n_swaps, n_states=n_states)
state_counts = calculate_state_counts(permutation_list, n_swaps, n_states)
for replica in range(n_states):
_, p_val = stats.chisquare(state_counts[replica, :])
if p_val < corrected_threshold:
print("Detected a significant difference between expected even mixing\n")
print("and observed mixing, p=%f" % p_val)
raise Exception("Replica %d failed the even mixing test" % replica)
return 0
示例5: smart_random
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chisquare [as 別名]
def smart_random(self):
"""
Choose a random training set that has an energy distribution most resembling that of the full dataset.
Uses the Chi-Squared method to estimate the similarity of the energy distrubtions.
"""
data = self.dataset.values
X = data[:, :-1]
y = data[:,-1].reshape(-1,1)
full_dataset_dist, binedges = np.histogram(y, bins=10, density=True)
pvalues = []
chi = []
for seed in range(500):
X_train, X_test, y_train, y_test = train_test_split(X,y,train_size=self.ntrain, random_state=seed)
train_dist, tmpbin = np.histogram(y_train, bins=binedges, density=True)
chisq, p = stats.chisquare(train_dist, f_exp=full_dataset_dist)
chi.append(chisq)
pvalues.append(p)
best_seed = np.argmin(chi)
#best_seed = np.argmax(chi)
X_train, X_test, y_train, y_test = train_test_split(X,y,train_size=self.ntrain, random_state=best_seed)
train_dist, tmpbin = np.histogram(y_train, bins=binedges, density=True)
indices = np.arange(self.dataset_size)
train_indices, test_indices = train_test_split(indices, train_size=self.ntrain, random_state=best_seed)
self.set_indices(train_indices, test_indices)
示例6: verify_model_ts
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chisquare [as 別名]
def verify_model_ts(self, ts, model, discrete, verify_roots):
alleles = model.alleles
num_alleles = len(alleles)
roots = np.zeros((num_alleles,))
transitions = np.zeros((num_alleles, num_alleles))
for site in ts.sites():
aa = site.ancestral_state
roots[alleles.index(aa)] += 1
for mut in ts.mutations():
if mut.parent == tskit.NULL:
pa = ts.site(mut.site).ancestral_state
else:
pa = ts.mutation(mut.parent).derived_state
da = mut.derived_state
transitions[alleles.index(pa), alleles.index(da)] += 1
num_muts = np.sum(roots)
if verify_roots:
exp_roots = num_muts * model.root_distribution
self.chisquare(roots, exp_roots)
for j, (row, p) in enumerate(zip(transitions, model.transition_matrix)):
p[j] = 0
p /= sum(p)
self.chisquare(row, sum(row) * p)
示例7: test_resample_1d_statistical_test_poisson
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chisquare [as 別名]
def test_resample_1d_statistical_test_poisson(rng):
# poisson is behaving super weird in scipy
x = rng.poisson(1.5, size=1000)
mu = np.mean(x)
xe = (0, 1, 2, 3, 10)
# somehow location 1 is needed here...
wref = np.diff(stats.poisson(mu, 1).cdf(xe)) * len(x)
# compute P values for replicas compared to original
prob = []
for bx in resample(x, 100, method="poisson", random_state=rng):
w = np.histogram(bx, bins=xe)[0]
c = stats.chisquare(w, wref)
prob.append(c.pvalue)
# check whether P value distribution is flat
# - test has chance probability of 1 % to fail randomly
# - if it fails due to programming error, value is typically < 1e-20
wp = np.histogram(prob, range=(0, 1))[0]
c = stats.chisquare(wp)
assert c.pvalue > 0.01
示例8: chisquare
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chisquare [as 別名]
def chisquare(n_ij, weighted):
"""
Calculates the chisquare for a matrix of ind_v x dep_v
for the unweighted and SPSS weighted case
"""
if weighted:
m_ij = n_ij / n_ij
nan_mask = np.isnan(m_ij)
m_ij[nan_mask] = 0.000001 # otherwise it breaks the chi-squared test
w_ij = m_ij
n_ij_col_sum = n_ij.sum(axis=1)
n_ij_row_sum = n_ij.sum(axis=0)
alpha, beta, eps = (1, 1, 1)
while eps > 10e-6:
alpha = alpha * np.vstack(n_ij_col_sum / m_ij.sum(axis=1))
beta = n_ij_row_sum / (alpha * w_ij).sum(axis=0)
eps = np.max(np.absolute(w_ij * alpha * beta - m_ij))
m_ij = w_ij * alpha * beta
else:
m_ij = (np.vstack(n_ij.sum(axis=1)) * n_ij.sum(axis=0)) / n_ij.sum().astype(float)
dof = (n_ij.shape[0] - 1) * (n_ij.shape[1] - 1)
chi, p_val = stats.chisquare(n_ij, f_exp=m_ij, ddof=n_ij.size - 1 - dof, axis=None)
return (chi, p_val, dof)
示例9: two_sample_test
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chisquare [as 別名]
def two_sample_test(cctype, X, Y):
model = cu.cctype_class(cctype)
if model.is_numeric(): # XXX WRONG CHOICE FOR DISCRETE NUMERIC XXX
_, pval = ks_2samp(X, Y)
else:
Xb, Yb = aligned_bincount([X, Y])
ignore = np.logical_and(Xb==0, Yb==0)
Xb, Yb = Xb[np.logical_not(ignore)], Yb[np.logical_not(ignore)]
Xb = Xb/float(sum(Xb)) * 1000
Yb = Yb/float(sum(Yb)) * 1000
_, pval = chisquare(Yb, f_exp=Xb)
return pval
示例10: chisquare
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chisquare [as 別名]
def chisquare(dist, fit_result, data, bins=None, range=None):
"""Perform a Chi^2 test for goodness of fit.
Tests the H0 hypothesis if the distances between fit result and
data are compatible with random fluctuations.
Args:
dist: A mle.Distribution instance
fit_result: The solution dict, returned by the Distribution.fit method
data: The data used in Distribution.fit
bins: Number of bins for the histogram (default: 1+log2(N))
range: Range for the histogram (default: min(data), max(data))
Returns:
chisquare: the test statistic, chi^2/ndf
p-value: the p-value, probability that differences between dist
and data are compatible with random fluctuation
"""
variables = dist.get_vars()
if len(variables) > 1:
raise ValueError("This is a 1d only chisquare test")
var = variables[0]
# rule of thumb for number if bins if not provided
if bins is None:
bins = np.ceil(2*len(data[var.name])**(1.0/3.0))
entries, edges = np.histogram(data[var.name], bins=bins, range=range)
# get expected frequencies from the cdf
cdf = dist.cdf(edges, **fit_result["x"])
exp_entries = np.round(len(data[var.name]) * (cdf[1:]-cdf[:-1]))
# use only bins where more then 4 entries are expected
mask = exp_entries >= 5
chisq, pvalue = stats.chisquare(entries[mask], exp_entries[mask], ddof=len(fit_result["x"]))
chisq = chisq/(np.sum(mask) - len(fit_result["x"]) - 1)
return chisq, pvalue
示例11: test_chisquaretest
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chisquare [as 別名]
def test_chisquaretest(self):
chi_test = ChiSquareTest(self.obs, self.exp)
sci_chi_test = chisquare(self.obs, self.exp)
assert_almost_equal(chi_test.chi_square, sci_chi_test.statistic)
assert_almost_equal(chi_test.p_value, sci_chi_test.pvalue)
assert not chi_test.continuity_correction
assert chi_test.degrees_of_freedom == len(self.obs) - 1
示例12: test_chisquaretest_arr
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chisquare [as 別名]
def test_chisquaretest_arr(self):
chi_test = ChiSquareTest(np.array(self.obs), np.array(self.exp))
sci_chi_test = chisquare(self.obs, self.exp)
assert_almost_equal(chi_test.chi_square, sci_chi_test.statistic)
assert_almost_equal(chi_test.p_value, sci_chi_test.pvalue)
assert not chi_test.continuity_correction
assert chi_test.degrees_of_freedom == len(self.obs) - 1
示例13: test_chisquare_no_exp
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chisquare [as 別名]
def test_chisquare_no_exp(self):
chi_test = ChiSquareTest(self.obs)
sci_chi_test = chisquare(self.obs, self.exp)
assert_almost_equal(chi_test.chi_square, sci_chi_test.statistic)
assert_almost_equal(chi_test.p_value, sci_chi_test.pvalue)
示例14: proportions_chisquare_allpairs
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chisquare [as 別名]
def proportions_chisquare_allpairs(count, nobs, multitest_method='hs'):
'''chisquare test of proportions for all pairs of k samples
Performs a chisquare test for proportions for all pairwise comparisons.
The alternative is two-sided
Parameters
----------
count : integer or array_like
the number of successes in nobs trials.
nobs : integer
the number of trials or observations.
prop : float, optional
The probability of success under the null hypothesis,
`0 <= prop <= 1`. The default value is `prop = 0.5`
multitest_method : string
This chooses the method for the multiple testing p-value correction,
that is used as default in the results.
It can be any method that is available in ``multipletesting``.
The default is Holm-Sidak 'hs'.
Returns
-------
result : AllPairsResults instance
The returned results instance has several statistics, such as p-values,
attached, and additional methods for using a non-default
``multitest_method``.
Notes
-----
Yates continuity correction is not available.
'''
#all_pairs = lmap(list, lzip(*np.triu_indices(4, 1)))
all_pairs = lzip(*np.triu_indices(len(count), 1))
pvals = [proportions_chisquare(count[list(pair)], nobs[list(pair)])[1]
for pair in all_pairs]
return AllPairsResults(pvals, all_pairs, multitest_method=multitest_method)
示例15: test_predict_prob
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chisquare [as 別名]
def test_predict_prob(self):
res = self.res
endog = res.model.endog
freq = np.bincount(endog.astype(int))
pr = res.predict(which='prob')
pr2 = sm.distributions.genpoisson_p.pmf(np.arange(6)[:, None],
res.predict(), res.params[-1], 1).T
assert_allclose(pr, pr2, rtol=1e-10, atol=1e-10)
from scipy import stats
chi2 = stats.chisquare(freq, pr.sum(0))
assert_allclose(chi2[:], (0.64628806058715882, 0.98578597726324468),
rtol=0.01)