當前位置: 首頁>>代碼示例>>Python>>正文


Python stats.chi2_contingency方法代碼示例

本文整理匯總了Python中scipy.stats.chi2_contingency方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.chi2_contingency方法的具體用法?Python stats.chi2_contingency怎麽用?Python stats.chi2_contingency使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats的用法示例。


在下文中一共展示了stats.chi2_contingency方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _CompareCategoricalFeatures

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chi2_contingency [as 別名]
def _CompareCategoricalFeatures(self, array1, array2):
        df1 = pd.DataFrame(Counter(array1), index=[1])
        df2 = pd.DataFrame(Counter(array2), index=[2])
        df = pd.concat((df1, df2), axis=0)
        df = df.fillna(0)

        descrip1, descrip2 = df.iloc[0, :], df.iloc[1, :]
        descrip1 = ['{}: {}'.format(descrip1.index[x], descrip1.iloc[x]) for x in range(descrip1.size)]
        descrip2 = ['{}: {}'.format(descrip2.index[x], descrip2.iloc[x]) for x in range(descrip2.size)]

        description = {}
        _, description['p-value'], _, _ = chi2_contingency(df.values, correction=True)
        description['method'] = 'Chi-Square'
        description['description'] = [', '.join(descrip1),
                                      ', '.join(descrip2)]
        return description 
開發者ID:salan668,項目名稱:FAE,代碼行數:18,代碼來源:DataSeparate.py

示例2: doHitProcess

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chi2_contingency [as 別名]
def doHitProcess(inp):
	idx, hits, n_f1_hits, n_f2_hits = inp
	p1_0, p1_1 = n_f1_hits-hits[0], hits[0]
	p2_0, p2_1 = n_f2_hits-hits[1], hits[1]
	#if no actives in either set return
	if p1_1 == 0 and p2_1 == 0: return
	#calculate percentage of hits for file1 and file2
	pcp1_1 = float(p1_1)/float(p1_0)
	pcp2_1 = float(p2_1)/float(p2_0)
	#if no inactives in either set, set chi2 to 1.0 and pvalue to 0
	if p1_0 == 0 and p2_0 == 0: return 1.0, idx, p1_1, pcp1_1, p2_1, pcp2_1, 1.0, 'NA'
	chi, pvalue = chi2_contingency([[p1_1,p1_0],[p2_1,p2_0]])[:2]
	#calculate odds ratio
	try: odr = (float(p1_1)/float(p1_0))/(float(p2_1)/float(p2_0))
	except ZeroDivisionError: odr = np.inf
	#calculate risk ratio
	try: rr = (float(p1_1)/(float(p1_1)+float(p1_0)))/(float(p2_1)/(float(p2_1)+float(p2_0)))
	except ZeroDivisionError: rr = np.inf
	return odr, idx, p1_1, pcp1_1, p2_1, pcp2_1, rr, pvalue
	
#calculate the chi2 and odds ratio between pathway and disease predictions 
開發者ID:lhm30,項目名稱:PIDGINv3,代碼行數:23,代碼來源:predict_enriched.py

示例3: divideData

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chi2_contingency [as 別名]
def divideData(data, minValue, maxValue):
    """
    遍曆所有可能的分段,返回卡方統計量最高的分段
    """
    maxChi2 = 0
    index = -1
    maxPValue = 0
    for i in range(minValue+1, maxValue):
        category = pd.cut(data["hours_per_week"], [minValue, i, maxValue],
            include_lowest=True)
        cross = pd.crosstab(data["label"], category)
        chi2, pValue, _, _ = scs.chi2_contingency(cross)
        if chi2 > maxChi2:
            maxPValue = pValue
            maxChi2 = chi2
            index = i
    return maxPValue, maxChi2, index 
開發者ID:GenTang,項目名稱:intro_ds,代碼行數:19,代碼來源:continuous_variable.py

示例4: g_test

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chi2_contingency [as 別名]
def g_test(data, correction=False):
    """
    G-test (likelihood ratio test).

    Parameters
    ----------
    data :
        the contingency table

    correction :
        whether to apply continuity corrections

    Returns
    -------
    g :
        the test statistic
    p :
        the p-value
    df:
        the number of degrees of freedom
    expected:
        the expected frequencies

    References
    ----------
    https://en.wikipedia.org/wiki/G-test
    """
    if isinstance(data, pd.DataFrame):
        data = data.values

    # remove zero rows/columns
    data = data[~np.all(data == 0, axis=1)]
    data = data[:, ~np.all(data == 0, axis=0)]

    if data.sum() == 0:
        return 0, 1.0, 1, None

    return stats.chi2_contingency(data, correction=correction,
                                  lambda_="log-likelihood") 
開發者ID:columbia,項目名稱:fairtest,代碼行數:41,代碼來源:hypothesis_test.py

示例5: test_chi2_association

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chi2_contingency [as 別名]
def test_chi2_association():

    np.random.seed(8743)

    table = np.random.randint(10, 30, size=(4, 4))

    from scipy.stats import chi2_contingency
    rslt_scipy = chi2_contingency(table)

    b = ctab.Table(table).test_nominal_association()

    assert_allclose(b.statistic, rslt_scipy[0])
    assert_allclose(b.pvalue, rslt_scipy[1]) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:15,代碼來源:test_contingency_tables.py

示例6: cramers_v_stat

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chi2_contingency [as 別名]
def cramers_v_stat(confusion_matrix):
    """Calculate Cramérs V statistic for categorial-categorial association."""
    chi2 = stats.chi2_contingency(confusion_matrix)[0]
    n = confusion_matrix.sum()
    phi2 = chi2 / n
    r, k = confusion_matrix.shape
    return math.sqrt(phi2 / min((r-1), (k-1))) 
開發者ID:MaxHalford,項目名稱:xam,代碼行數:9,代碼來源:eda.py

示例7: cramers_v_corrected_stat

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chi2_contingency [as 別名]
def cramers_v_corrected_stat(confusion_matrix):
    """Calculate Cramérs V statistic for categorial-categorial association.

    Uses correction from Bergsma and Wicher, Journal of the Korean Statistical
    Society 42 (2013): 323-328.
    """
    chi2 = stats.chi2_contingency(confusion_matrix)[0]
    n = confusion_matrix.sum()
    phi2 = chi2 / n
    r, k = confusion_matrix.shape
    phi2_corr = max(0, phi2 - ((k-1)*(r-1)) / (n-1))
    r_corr = r - ((r-1)**2) / (n-1)
    k_corr = k - ((k-1)**2) / (n-1)
    return math.sqrt(phi2_corr / min((r_corr-1), (k_corr-1))) 
開發者ID:MaxHalford,項目名稱:xam,代碼行數:16,代碼來源:eda.py

示例8: chisquare_test

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chi2_contingency [as 別名]
def chisquare_test(pDataFile1, pDataFile2, pAlpha):
    # pair of accepted/unaccepted and pvalue
    # True is rejection of H0
    # False acceptance of H0
    test_result = []
    accepted = []
    rejected = []
    # Find the critical value for alpha confidence level
    critical_value = stats.chi2.ppf(q=1 - pAlpha, df=1)
    zero_values_counter = 0
    for i, (group1, group2) in enumerate(zip(pDataFile1, pDataFile2)):
        try:
            chi2, p_value, dof, ex = stats.chi2_contingency(
                [group1, group2], correction=False)
            if chi2 >= critical_value:
                test_result.append(p_value)
                rejected.append([i, p_value])
            else:
                test_result.append(p_value)
                accepted.append([i, p_value])

        except ValueError:
            zero_values_counter += 1
            test_result.append(np.nan)
            accepted.append([i, 1.0])

    if zero_values_counter > 0:
        log.info('{} samples were not tested because at least one condition contained no data in both groups.'.format(
            zero_values_counter))
    return test_result, accepted, rejected 
開發者ID:deeptools,項目名稱:HiCExplorer,代碼行數:32,代碼來源:chicDifferentialTest.py

示例9: doHitProcess

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chi2_contingency [as 別名]
def doHitProcess(inp):
	idx, hits, n_f1_hits, n_f2_hits = inp
	if hits[0] == 0 and hits[1] == 0: return
	if hits[0] == 0: return idx, 999.0, 0, 0, hits[1], float(hits[1])/float(n_f2_hits), 'NA', 'NA'
	if hits[1] == 0: return idx, 0.0, hits[0], float(hits[0])/float(n_f1_hits), 0, 0, 'NA', 'NA'
	h1_p = float(hits[0])/float(n_f1_hits)
	h2_p = float(hits[1])/float(n_f2_hits)
	chi, pvalue, _, _ = stats.chi2_contingency([[hits[1],n_f2_hits-hits[1]],[hits[0],n_f1_hits-hits[0]]])
	return idx, round(h2_p/h1_p,3), hits[0], h1_p, hits[1], h2_p, chi, pvalue

#calculate the enrichment ratio between predictions 
開發者ID:lhm30,項目名稱:PIDGINv2,代碼行數:13,代碼來源:predict_enriched_two_libraries_decision_tree.py

示例10: test_basic

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chi2_contingency [as 別名]
def test_basic(self):
        # median_test calls chi2_contingency to compute the test statistic
        # and p-value.  Make sure it hasn't screwed up the call...

        x = [1, 2, 3, 4, 5]
        y = [2, 4, 6, 8]

        stat, p, m, tbl = stats.median_test(x, y)
        assert_equal(m, 4)
        assert_equal(tbl, [[1, 2], [4, 2]])

        exp_stat, exp_p, dof, e = stats.chi2_contingency(tbl)
        assert_allclose(stat, exp_stat)
        assert_allclose(p, exp_p)

        stat, p, m, tbl = stats.median_test(x, y, lambda_=0)
        assert_equal(m, 4)
        assert_equal(tbl, [[1, 2], [4, 2]])

        exp_stat, exp_p, dof, e = stats.chi2_contingency(tbl, lambda_=0)
        assert_allclose(stat, exp_stat)
        assert_allclose(p, exp_p)

        stat, p, m, tbl = stats.median_test(x, y, correction=False)
        assert_equal(m, 4)
        assert_equal(tbl, [[1, 2], [4, 2]])

        exp_stat, exp_p, dof, e = stats.chi2_contingency(tbl, correction=False)
        assert_allclose(stat, exp_stat)
        assert_allclose(p, exp_p) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:32,代碼來源:test_morestats.py

示例11: test_run_simulator

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chi2_contingency [as 別名]
def test_run_simulator(self):
        """Test running in a simulator."""
        qr = QuantumRegister(2, 'q')
        cr = ClassicalRegister(2, 'c')
        qc = QuantumCircuit(qr, cr, name='hadamard')
        qc.h(qr)
        qc.measure(qr, cr)
        qobj = assemble(transpile([ReferenceCircuits.bell(), qc], backend=self.sim_backend),
                        backend=self.sim_backend)
        shots = qobj.config.shots
        job = self.sim_backend.run(qobj, validate_qobj=True)
        result = job.result()
        counts_qx1 = result.get_counts(0)
        counts_qx2 = result.get_counts(1)
        counts_ex1 = {'00': shots / 2, '11': shots / 2}
        counts_ex2 = {'00': shots / 4, '11': shots / 4, '10': shots / 4, '01': shots / 4}
        states1 = counts_qx1.keys() | counts_ex1.keys()
        states2 = counts_qx2.keys() | counts_ex2.keys()
        # contingency table
        ctable1 = numpy.array([[counts_qx1.get(key, 0) for key in states1],
                               [counts_ex1.get(key, 0) for key in states1]])
        ctable2 = numpy.array([[counts_qx2.get(key, 0) for key in states2],
                               [counts_ex2.get(key, 0) for key in states2]])
        self.log.info('states1: %s', str(states1))
        self.log.info('states2: %s', str(states2))
        self.log.info('ctable1: %s', str(ctable1))
        self.log.info('ctable2: %s', str(ctable2))
        contingency1 = chi2_contingency(ctable1)
        contingency2 = chi2_contingency(ctable2)
        self.log.info('chi2_contingency1: %s', str(contingency1))
        self.log.info('chi2_contingency2: %s', str(contingency2))
        self.assertGreater(contingency1[1], 0.01)
        self.assertGreater(contingency2[1], 0.01) 
開發者ID:Qiskit,項目名稱:qiskit-ibmq-provider,代碼行數:35,代碼來源:test_ibmq_job.py

示例12: chi2

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chi2_contingency [as 別名]
def chi2(X,y):
    '''計算一組數據的卡方值,彌補sklearn中的chi2隻支持2*2的缺憾
    parameter
    ----------
    X:可以是單個特征,也可以是一組特征
    y:目標變量
    
    return
    ------
    chi2_value: np.array 數組
    chi2_pvalue:np.array 數組
    '''
    X=np.asarray(X)
    if len(X.shape)==1:
        X=X.reshape((len(X),1))
    X=pd.DataFrame(X)
    chi2_value=[]
    chi2_pvalue=[]
    for c in X.columns:
        fo=pd.crosstab(X[c],y)
        s=stats.chi2_contingency(fo)
        chi2_value.append(s[0])
        chi2_pvalue.append(s[1])
    return (np.array(chi2_value),np.array(chi2_pvalue))



# 待定 
開發者ID:gasongjian,項目名稱:reportgen,代碼行數:30,代碼來源:metrics.py

示例13: _chisqure_fo

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chi2_contingency [as 別名]
def _chisqure_fo(fo):
    if any(fo==0):
        fo=fo+1
    s=stats.chi2_contingency(fo)
    return s[0],s[1] 
開發者ID:gasongjian,項目名稱:reportgen,代碼行數:7,代碼來源:preprocessing.py

示例14: chi2_test

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chi2_contingency [as 別名]
def chi2_test(fo,alpha=0.05):
    import scipy.stats as stats
    fo=pd.DataFrame(fo)
    chiStats = stats.chi2_contingency(observed=fo)
    #critical_value = stats.chi2.ppf(q=1-alpha,df=chiStats[2])
    #observed_chi_val = chiStats[0]
    # p<alpha 等價於 observed_chi_val>critical_value
    chi2_data=(chiStats[1] <= alpha,chiStats[1])
    return chi2_data 
開發者ID:gasongjian,項目名稱:reportgen,代碼行數:11,代碼來源:questionnaire.py

示例15: chi2_test

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import chi2_contingency [as 別名]
def chi2_test(X, y):
    """

    Args:
        X (np.ndarray): Binary feature matrix
        y (np.ndarray): Binary response vector

    Returns:
        np.array: A vector of p-values, one for every feature.
    """
    X0 = 1 - X
    if hasattr(y, "values"):
        y = y.values
    Y = y.reshape((-1, 1))
    Y = np.append(1 - Y, Y, axis=1)
    Tbl1 = np.dot(Y.T, X)
    Tbl0 = np.dot(Y.T, X0)

    m = X.shape[1]
    pvals = np.empty(m) * np.NaN
    for i in range(m):
        if np.all([Tbl1[:, i] == 0]) or np.all([Tbl0[:, i] == 0]):
            pvals[i] = 1
        else:
            r = stats.chi2_contingency([Tbl0[:, i], Tbl1[:, i]], True)
            pvals[i] = r[1]
    return pvals 
開發者ID:IBM,項目名稱:causallib,代碼行數:29,代碼來源:stat_utils.py


注:本文中的scipy.stats.chi2_contingency方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。