本文整理匯總了Python中scipy.stats.chi2.sf方法的典型用法代碼示例。如果您正苦於以下問題:Python chi2.sf方法的具體用法?Python chi2.sf怎麽用?Python chi2.sf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats.chi2
的用法示例。
在下文中一共展示了chi2.sf方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _p_value
# 需要導入模塊: from scipy.stats import chi2 [as 別名]
# 或者: from scipy.stats.chi2 import sf [as 別名]
def _p_value(self):
r"""
Finds the p-value of the chi-square statistic.
Notes
-----
The p-value can be found by comparing the calculated :math:`\chi^2` statistic to a chi-square distribution.
The degrees of freedom is equal to :math:`k - 1` minus any additional reduction in the degrees of freedom, if
specified.
Returns
-------
p_value : float
The p-value of the associated chi-square value and degrees of freedom.
"""
pval = chi2.sf(self.chi_square, self.degrees_of_freedom)
return pval
示例2: visualize_pruning
# 需要導入模塊: from scipy.stats import chi2 [as 別名]
# 或者: from scipy.stats.chi2 import sf [as 別名]
def visualize_pruning(w_norm, n_retained,
title='Initial model weights vs theoretical for pruning'):
fig, ax1 = plt.subplots()
ax1.set_title(title)
ax1.hist(w_norm, normed=True, bins=200, alpha=0.6, histtype='stepfilled',
range=[0, n_retained * 5])
ax1.axvline(x=n_retained, linewidth=1, color='r')
ax1.set_ylabel('PDF', color='b')
ax2 = ax1.twinx()
ax2.set_ylabel('Survival Function', color='r')
ax1.set_xlabel('w_norm')
x = np.linspace(chi2.ppf(0.001, n_retained),
chi2.ppf(0.999, n_retained), 100)
ax2.plot(x, chi2.sf(x, n_retained),
'g-', lw=1, alpha=0.6, label='chi2 pdf')
ax1.plot(x, chi2.pdf(x, n_retained),
'r-', lw=1, alpha=0.6, label='chi2 pdf')
示例3: asymptotic_p_value
# 需要導入模塊: from scipy.stats import chi2 [as 別名]
# 或者: from scipy.stats.chi2 import sf [as 別名]
def asymptotic_p_value(self, log_likelihood_ratio, dof=None):
"""
Calculates the p-value corresponding to a given log likelihood ratio and number of degrees of freedom assuming
the asymptotic approximation.
Parameters
----------
log_likelihood_ratio : ndarray
Log likelihood ratio (without the factor -2)
dof : int or None, optional
Number of parameters / degrees of freedom. None means the overall number of parameters is used. Default
value: None.
Returns
-------
p_values : ndarray
p-values.
"""
if dof is None:
dof = self.n_parameters
q = -2.0 * log_likelihood_ratio
p_value = chi2.sf(x=q, df=dof)
return p_value
示例4: _p_value
# 需要導入模塊: from scipy.stats import chi2 [as 別名]
# 或者: from scipy.stats.chi2 import sf [as 別名]
def _p_value(self):
r"""
Calculates the p-value given the chi-square test statistic and the degrees of freedom.
Returns
-------
pval : float
The computed p-value.
"""
pval = chi2.sf(self.chi_square, self.degrees_freedom)
return pval
示例5: _p_value
# 需要導入模塊: from scipy.stats import chi2 [as 別名]
# 或者: from scipy.stats.chi2 import sf [as 別名]
def _p_value(self):
r"""
Returns the p-value of the Freidman test.
Returns
-------
pval: float
The p-value of the Friedman test statistic given a chi-square distribution.
"""
pval = chi2.sf(self.xr2, self.k - 1)
return pval
示例6: _test_statistic
# 需要導入模塊: from scipy.stats import chi2 [as 別名]
# 或者: from scipy.stats.chi2 import sf [as 別名]
def _test_statistic(self):
r"""
Returns the Van der Waerden test statistic, :math:`T_1` and the associated p-value.
Returns
-------
t1 : float
The Van der Waerden test statistic
p_value : float
The computed p-value
Notes
-----
The Van der Waerden test statistic, :math:`T_1` is defined as:
.. math::
T_1 = \frac{1}{s^2} \sum^k_{i=1} n_i (\bar{A}_i)^2
References
----------
Conover, W. J. (1999). Practical Nonparameteric Statistics (Third ed.). Wiley.
Wikipedia contributors. "Van der Waerden test." Wikipedia, The Free Encyclopedia.
Wikipedia, The Free Encyclopedia, 8 Feb. 2017. Web. 8 Mar. 2020.
"""
average_scores = np.array([i for _, i in self.average_scores])
t1 = np.sum(self._group_obs * average_scores ** 2) / self.score_variance
p_value = chi2.sf(t1, self.k - 1)
return t1, p_value
# def _min_significant_difference(self):
# mse = self.score_variance * ((self.n - 1 - self.test_statistic) / (self.n - self.k))
#
# msd = t.ppf(1 - self.alpha / 2, self.n - self.k) * np.sqrt(2 * mse / self.k)
#
# return msd
示例7: pvalues
# 需要導入模塊: from scipy.stats import chi2 [as 別名]
# 或者: from scipy.stats.chi2 import sf [as 別名]
def pvalues(self):
"""
(array) The p-values associated with the z-statistics of the
coefficients. Note that the coefficients are assumed to have a Normal
distribution.
"""
return norm.sf(np.abs(self.zvalues)) * 2
示例8: _opt_var
# 需要導入模塊: from scipy.stats import chi2 [as 別名]
# 或者: from scipy.stats.chi2 import sf [as 別名]
def _opt_var(self, nuisance_mu, pval=False):
"""
This is the function to be optimized over a nuisance mean parameter
to determine the likelihood ratio for the variance
Parameters
----------
nuisance_mu : float
Value of a nuisance mean parameter
Returns
-------
llr : float
Log likelihood of a pre-specified variance holding the nuisance
parameter constant
"""
endog = self.endog
nobs = self.nobs
sig_data = ((endog - nuisance_mu) ** 2 \
- self.sig2_0)
mu_data = (endog - nuisance_mu)
est_vect = np.column_stack((mu_data, sig_data))
eta_star = self._modif_newton(np.array([1. / nobs,
1. / nobs]), est_vect,
np.ones(nobs) * (1. / nobs))
denom = 1 + np.dot(eta_star, est_vect.T)
self.new_weights = 1. / nobs * 1. / denom
llr = np.sum(np.log(nobs * self.new_weights))
if pval: # Used for contour plotting
return chi2.sf(-2 * llr, 1)
return -2 * llr
示例9: test_mean
# 需要導入模塊: from scipy.stats import chi2 [as 別名]
# 或者: from scipy.stats.chi2 import sf [as 別名]
def test_mean(self, mu0, return_weights=False):
"""
Returns - 2 x log-likelihood ratio, p-value and weights
for a hypothesis test of the mean.
Parameters
----------
mu0 : float
Mean value to be tested
return_weights : bool
If return_weights is True the funtion returns
the weights of the observations under the null hypothesis.
Default is False
Returns
-------
test_results : tuple
The log-likelihood ratio and p-value of mu0
"""
self.mu0 = mu0
endog = self.endog
nobs = self.nobs
eta_min = (1. - (1. / nobs)) / (self.mu0 - max(endog))
eta_max = (1. - (1. / nobs)) / (self.mu0 - min(endog))
eta_star = optimize.brentq(self._find_eta, eta_min, eta_max)
new_weights = (1. / nobs) * 1. / (1. + eta_star * (endog - self.mu0))
llr = -2 * np.sum(np.log(nobs * new_weights))
if return_weights:
return llr, chi2.sf(llr, 1), new_weights
else:
return llr, chi2.sf(llr, 1)
示例10: test_var
# 需要導入模塊: from scipy.stats import chi2 [as 別名]
# 或者: from scipy.stats.chi2 import sf [as 別名]
def test_var(self, sig2_0, return_weights=False):
"""
Returns -2 x log-likelihoog ratio and the p-value for the
hypothesized variance
Parameters
----------
sig2_0 : float
Hypothesized variance to be tested
return_weights : bool
If True, returns the weights that maximize the
likelihood of observing sig2_0. Default is False
Returns
--------
test_results : tuple
The log-likelihood ratio and the p_value of sig2_0
Examples
--------
>>> import numpy as np
>>> import statsmodels.api as sm
>>> random_numbers = np.random.standard_normal(1000)*100
>>> el_analysis = sm.emplike.DescStat(random_numbers)
>>> hyp_test = el_analysis.test_var(9500)
"""
self.sig2_0 = sig2_0
mu_max = max(self.endog)
mu_min = min(self.endog)
llr = optimize.fminbound(self._opt_var, mu_min, mu_max, \
full_output=1)[1]
p_val = chi2.sf(llr, 1)
if return_weights:
return llr, p_val, self.new_weights.T
else:
return llr, p_val
示例11: test_kurt
# 需要導入模塊: from scipy.stats import chi2 [as 別名]
# 或者: from scipy.stats.chi2 import sf [as 別名]
def test_kurt(self, kurt0, return_weights=False):
"""
Returns -2 x log-likelihood and the p-value for the hypothesized
kurtosis.
Parameters
----------
kurt0 : float
Kurtosis value to be tested
return_weights : bool
If True, function also returns the weights that
maximize the likelihood ratio. Default is False.
Returns
-------
test_results : tuple
The log-likelihood ratio and p-value of kurt0
"""
self.kurt0 = kurt0
start_nuisance = np.array([self.endog.mean(),
self.endog.var()])
llr = optimize.fmin_powell(self._opt_kurt, start_nuisance,
full_output=1, disp=0)[1]
p_val = chi2.sf(llr, 1)
if return_weights:
return llr, p_val, self.new_weights.T
return llr, p_val
示例12: test_joint_skew_kurt
# 需要導入模塊: from scipy.stats import chi2 [as 別名]
# 或者: from scipy.stats.chi2 import sf [as 別名]
def test_joint_skew_kurt(self, skew0, kurt0, return_weights=False):
"""
Returns - 2 x log-likelihood and the p-value for the joint
hypothesis test for skewness and kurtosis
Parameters
----------
skew0 : float
Skewness value to be tested
kurt0 : float
Kurtosis value to be tested
return_weights : bool
If True, function also returns the weights that
maximize the likelihood ratio. Default is False.
Returns
-------
test_results : tuple
The log-likelihood ratio and p-value of the joint hypothesis test.
"""
self.skew0 = skew0
self.kurt0 = kurt0
start_nuisance = np.array([self.endog.mean(),
self.endog.var()])
llr = optimize.fmin_powell(self._opt_skew_kurt, start_nuisance,
full_output=1, disp=0)[1]
p_val = chi2.sf(llr, 2)
if return_weights:
return llr, p_val, self.new_weights.T
return llr, p_val
示例13: mv_test_mean
# 需要導入模塊: from scipy.stats import chi2 [as 別名]
# 或者: from scipy.stats.chi2 import sf [as 別名]
def mv_test_mean(self, mu_array, return_weights=False):
"""
Returns -2 x log likelihood and the p-value
for a multivariate hypothesis test of the mean
Parameters
----------
mu_array : 1d array
Hypothesized values for the mean. Must have same number of
elements as columns in endog
return_weights : bool
If True, returns the weights that maximize the
likelihood of mu_array. Default is False.
Returns
-------
test_results : tuple
The log-likelihood ratio and p-value for mu_array
"""
endog = self.endog
nobs = self.nobs
if len(mu_array) != endog.shape[1]:
raise Exception('mu_array must have the same number of \
elements as the columns of the data.')
mu_array = mu_array.reshape(1, endog.shape[1])
means = np.ones((endog.shape[0], endog.shape[1]))
means = mu_array * means
est_vect = endog - means
start_vals = 1. / nobs * np.ones(endog.shape[1])
eta_star = self._modif_newton(start_vals, est_vect,
np.ones(nobs) * (1. / nobs))
denom = 1 + np.dot(eta_star, est_vect.T)
self.new_weights = 1 / nobs * 1 / denom
llr = -2 * np.sum(np.log(nobs * self.new_weights))
p_val = chi2.sf(llr, mu_array.shape[1])
if return_weights:
return llr, p_val, self.new_weights.T
else:
return llr, p_val
示例14: test_corr
# 需要導入模塊: from scipy.stats import chi2 [as 別名]
# 或者: from scipy.stats.chi2 import sf [as 別名]
def test_corr(self, corr0, return_weights=0):
"""
Returns -2 x log-likelihood ratio and p-value for the
correlation coefficient between 2 variables
Parameters
----------
corr0 : float
Hypothesized value to be tested
return_weights : bool
If true, returns the weights that maximize
the log-likelihood at the hypothesized value
"""
nobs = self.nobs
endog = self.endog
if endog.shape[1] != 2:
raise Exception('Correlation matrix not yet implemented')
nuis0 = np.array([endog[:, 0].mean(),
endog[:, 0].var(),
endog[:, 1].mean(),
endog[:, 1].var()])
x0 = np.zeros(5)
weights0 = np.array([1. / nobs] * int(nobs))
args = (corr0, endog, nobs, x0, weights0)
llr = optimize.fmin(self._opt_correl, nuis0, args=args,
full_output=1, disp=0)[1]
p_val = chi2.sf(llr, 1)
if return_weights:
return llr, p_val, self.new_weights.T
return llr, p_val
示例15: p_z_norm
# 需要導入模塊: from scipy.stats import chi2 [as 別名]
# 或者: from scipy.stats.chi2 import sf [as 別名]
def p_z_norm(est, se):
'''Convert estimate and se to Z-score and P-value.'''
try:
Z = est / se
except (FloatingPointError, ZeroDivisionError):
Z = float('inf')
P = chi2.sf(Z ** 2, 1, loc=0, scale=1) # 0 if Z=inf
return P, Z