當前位置: 首頁>>代碼示例>>Python>>正文


Python stats.boxcox方法代碼示例

本文整理匯總了Python中scipy.stats.boxcox方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.boxcox方法的具體用法?Python stats.boxcox怎麽用?Python stats.boxcox使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats的用法示例。


在下文中一共展示了stats.boxcox方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _estimate_lambda_single_y

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import boxcox [as 別名]
def _estimate_lambda_single_y(y):
    """Estimate lambda for a single y, given a range of lambdas
    through which to search. No validation performed.
    
    Parameters
    ----------

    y : ndarray, shape (n_samples,)
       The vector being estimated against
    """

    # ensure is array
    y = np.array(y)

    # Use scipy's log-likelihood estimator
    b = boxcox(y, lmbda=None)

    # Return lambda corresponding to maximum P
    return b[1] 
開發者ID:tgsmith61591,項目名稱:skutil,代碼行數:21,代碼來源:transform.py

示例2: _yeo_johnson_optimize

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import boxcox [as 別名]
def _yeo_johnson_optimize(self, x):
        """Find and return optimal lambda parameter of the Yeo-Johnson
        transform by MLE, for observed data x.

        Like for Box-Cox, MLE is done via the brent optimizer.
        """

        def _neg_log_likelihood(lmbda):
            """Return the negative log likelihood of the observed data x as a
            function of lambda."""
            x_trans = self._yeo_johnson_transform(x, lmbda)
            n_samples = x.shape[0]

            loglike = -n_samples / 2 * np.log(x_trans.var())
            loglike += (lmbda - 1) * (np.sign(x) * np.log1p(np.abs(x))).sum()

            return -loglike

        # the computation of lambda is influenced by NaNs so we need to
        # get rid of them
        x = x[~np.isnan(x)]
        # choosing bracket -2, 2 like for boxcox
        return optimize.brent(_neg_log_likelihood, brack=(-2, 2)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:25,代碼來源:data.py

示例3: test_power_transformer_1d

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import boxcox [as 別名]
def test_power_transformer_1d():
    X = np.abs(X_1col)

    for standardize in [True, False]:
        pt = PowerTransformer(method='box-cox', standardize=standardize)

        X_trans = pt.fit_transform(X)
        X_trans_func = power_transform(
            X, method='box-cox',
            standardize=standardize
        )

        X_expected, lambda_expected = stats.boxcox(X.flatten())

        if standardize:
            X_expected = scale(X_expected)

        assert_almost_equal(X_expected.reshape(-1, 1), X_trans)
        assert_almost_equal(X_expected.reshape(-1, 1), X_trans_func)

        assert_almost_equal(X, pt.inverse_transform(X_trans))
        assert_almost_equal(lambda_expected, pt.lambdas_[0])

        assert len(pt.lambdas_) == X.shape[1]
        assert isinstance(pt.lambdas_, np.ndarray) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:27,代碼來源:test_data.py

示例4: test_alpha

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import boxcox [as 別名]
def test_alpha(self):
        np.random.seed(1234)
        x = stats.loggamma.rvs(5, size=50) + 5

        # Some regular values for alpha, on a small sample size
        _, _, interval = stats.boxcox(x, alpha=0.75)
        assert_allclose(interval, [4.004485780226041, 5.138756355035744])
        _, _, interval = stats.boxcox(x, alpha=0.05)
        assert_allclose(interval, [1.2138178554857557, 8.209033272375663])

        # Try some extreme values, see we don't hit the N=500 limit
        x = stats.loggamma.rvs(7, size=500) + 15
        _, _, interval = stats.boxcox(x, alpha=0.001)
        assert_allclose(interval, [0.3988867, 11.40553131])
        _, _, interval = stats.boxcox(x, alpha=0.999)
        assert_allclose(interval, [5.83316246, 5.83735292]) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:18,代碼來源:test_morestats.py

示例5: fit

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import boxcox [as 別名]
def fit(self, x: np.ndarray, y=None):
        """Fit a Gaussianizing transformation to each variable/column in x."""
        # Initialize coefficients again with an empty list.  Otherwise
        # calling .fit() repeatedly will augment previous .coefs_ list.
        self.coefs_ = []
        x = _update_x(x)
        if self.verbose:
            print("Gaussianizing with strategy='%s'" % self.strategy)
        
        if self.strategy == "lambert":
            _get_coef = lambda vec: igmm(vec, self.tol, max_iter=self.max_iter)
        elif self.strategy == "brute":
            _get_coef = lambda vec: None   # TODO: In principle, we could store parameters to do a quasi-invert
        elif self.strategy == "boxcox":
            _get_coef = lambda vec: boxcox(vec)[1]
        else:
            raise NotImplementedError("stategy='%s' not implemented." % self.strategy)

        for x_i in x.T:
            self.coefs_.append(_get_coef(x_i))

        return self 
開發者ID:gregversteeg,項目名稱:gaussianize,代碼行數:24,代碼來源:gaussianize.py

示例6: fit

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import boxcox [as 別名]
def fit(self, y, exogenous=None):
        """Fit the transformer

        Learns the value of ``lmbda``, if not specified in the constructor.
        If defined in the constructor, is not re-learned.

        Parameters
        ----------
        y : array-like or None, shape=(n_samples,)
            The endogenous (time-series) array.

        exogenous : array-like or None, shape=(n_samples, n_features), optional
            The exogenous array of additional covariates. Not used for
            endogenous transformers. Default is None, and non-None values will
            serve as pass-through arrays.
        """
        lam1 = self.lmbda
        lam2 = self.lmbda2

        if lam2 < 0:
            raise ValueError("lmbda2 must be a non-negative scalar value")

        if lam1 is None:
            y, _ = self._check_y_exog(y, exogenous)
            _, lam1 = stats.boxcox(y + lam2, lmbda=None, alpha=None)

        self.lam1_ = lam1
        self.lam2_ = lam2
        return self 
開發者ID:alkaline-ml,項目名稱:pmdarima,代碼行數:31,代碼來源:boxcox.py

示例7: test_boxcox_bad_arg

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import boxcox [as 別名]
def test_boxcox_bad_arg():
    """Raise ValueError if any data value is negative."""
    x = np.array([-1])
    assert_raises(ValueError, stats.boxcox, x) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:6,代碼來源:test_morestats.py

示例8: _fit

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import boxcox [as 別名]
def _fit(self, X, y=None, force_transform=False):
        X = self._check_input(X, check_positive=True, check_method=True)

        if not self.copy and not force_transform:  # if call from fit()
            X = X.copy()  # force copy so that fit does not change X inplace

        optim_function = {'box-cox': self._box_cox_optimize,
                          'yeo-johnson': self._yeo_johnson_optimize
                          }[self.method]
        with np.errstate(invalid='ignore'):  # hide NaN warnings
            self.lambdas_ = np.array([optim_function(col) for col in X.T])

        if self.standardize or force_transform:
            transform_function = {'box-cox': boxcox,
                                  'yeo-johnson': self._yeo_johnson_transform
                                  }[self.method]
            for i, lmbda in enumerate(self.lambdas_):
                with np.errstate(invalid='ignore'):  # hide NaN warnings
                    X[:, i] = transform_function(X[:, i], lmbda)

        if self.standardize:
            self._scaler = StandardScaler(copy=False)
            if force_transform:
                X = self._scaler.fit_transform(X)
            else:
                self._scaler.fit(X)

        return X 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:30,代碼來源:data.py

示例9: transform

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import boxcox [as 別名]
def transform(self, X):
        """Apply the power transform to each feature using the fitted lambdas.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            The data to be transformed using a power transformation.

        Returns
        -------
        X_trans : array-like, shape (n_samples, n_features)
            The transformed data.
        """
        check_is_fitted(self, 'lambdas_')
        X = self._check_input(X, check_positive=True, check_shape=True)

        transform_function = {'box-cox': boxcox,
                              'yeo-johnson': self._yeo_johnson_transform
                              }[self.method]
        for i, lmbda in enumerate(self.lambdas_):
            with np.errstate(invalid='ignore'):  # hide NaN warnings
                X[:, i] = transform_function(X[:, i], lmbda)

        if self.standardize:
            X = self._scaler.transform(X)

        return X 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:29,代碼來源:data.py

示例10: _box_cox_optimize

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import boxcox [as 別名]
def _box_cox_optimize(self, x):
        """Find and return optimal lambda parameter of the Box-Cox transform by
        MLE, for observed data x.

        We here use scipy builtins which uses the brent optimizer.
        """
        # the computation of lambda is influenced by NaNs so we need to
        # get rid of them
        _, lmbda = stats.boxcox(x[~np.isnan(x)], lmbda=None)

        return lmbda 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:13,代碼來源:data.py

示例11: test_power_transformer_boxcox_strictly_positive_exception

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import boxcox [as 別名]
def test_power_transformer_boxcox_strictly_positive_exception():
    # Exceptions should be raised for negative arrays and zero arrays when
    # method is boxcox

    pt = PowerTransformer(method='box-cox')
    pt.fit(np.abs(X_2d))
    X_with_negatives = X_2d
    not_positive_message = 'strictly positive'

    assert_raise_message(ValueError, not_positive_message,
                         pt.transform, X_with_negatives)

    assert_raise_message(ValueError, not_positive_message,
                         pt.fit, X_with_negatives)

    assert_raise_message(ValueError, not_positive_message,
                         power_transform, X_with_negatives, 'box-cox')

    assert_raise_message(ValueError, not_positive_message,
                         pt.transform, np.zeros(X_2d.shape))

    assert_raise_message(ValueError, not_positive_message,
                         pt.fit, np.zeros(X_2d.shape))

    assert_raise_message(ValueError, not_positive_message,
                         power_transform, np.zeros(X_2d.shape), 'box-cox') 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:28,代碼來源:test_data.py

示例12: fit_transform

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import boxcox [as 別名]
def fit_transform(self, X: dt.Frame, y: np.array = None):
        XX = X.to_pandas().iloc[:, 0].values
        is_na = np.isnan(XX)
        self._offset = -np.nanmin(XX) if np.nanmin(XX) < 0 else 0
        self._offset += 1e-3
        self._lmbda = None
        if not any(~is_na):
            return X
        x = self._offset + XX[~is_na]
        x = np.asarray(x)
        x[x <= 0] = 1e-3
        self._lmbda = boxcox(x, lmbda=self._lmbda)[1]  # compute lambda
        return self.transform(X) 
開發者ID:h2oai,項目名稱:driverlessai-recipes,代碼行數:15,代碼來源:boxcox_transformer.py

示例13: transform

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import boxcox [as 別名]
def transform(self, X: dt.Frame):
        XX = X.to_pandas().iloc[:, 0].values
        is_na = np.isnan(XX) | np.array(XX <= -self._offset)
        if not any(~is_na) or self._lmbda is None:
            return X
        x = self._offset + XX[~is_na]
        x = np.asarray(x)
        x[x <= 0] = 1e-3  # don't worry if not invertible, just ensure can transform and valid transforms are kept valid
        ret = boxcox(x, lmbda=self._lmbda)  # apply transform with pre-computed lambda
        XX[~is_na] = ret
        return XX 
開發者ID:h2oai,項目名稱:driverlessai-recipes,代碼行數:13,代碼來源:boxcox_transformer.py

示例14: test_2d_input

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import boxcox [as 別名]
def test_2d_input(self):
        # Note: boxcox_llf() was already working with 2-D input (sort of), so
        # keep it like that.  boxcox() doesn't work with 2-D input though, due
        # to brent() returning a scalar.
        np.random.seed(54321)
        x = stats.norm.rvs(size=100, loc=10)
        lmbda = 1
        llf = stats.boxcox_llf(lmbda, x)
        llf2 = stats.boxcox_llf(lmbda, np.vstack([x, x]).T)
        assert_allclose([llf, llf], llf2, rtol=1e-12) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:12,代碼來源:test_morestats.py

示例15: test_fixed_lmbda

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import boxcox [as 別名]
def test_fixed_lmbda(self):
        np.random.seed(12345)
        x = stats.loggamma.rvs(5, size=50) + 5
        xt = stats.boxcox(x, lmbda=1)
        assert_allclose(xt, x - 1)
        xt = stats.boxcox(x, lmbda=-1)
        assert_allclose(xt, 1 - 1/x)

        xt = stats.boxcox(x, lmbda=0)
        assert_allclose(xt, np.log(x))

        # Also test that array_like input works
        xt = stats.boxcox(list(x), lmbda=0)
        assert_allclose(xt, np.log(x)) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:16,代碼來源:test_morestats.py


注:本文中的scipy.stats.boxcox方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。