本文整理匯總了Python中scipy.stats.binom_test方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.binom_test方法的具體用法?Python stats.binom_test怎麽用?Python stats.binom_test使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats
的用法示例。
在下文中一共展示了stats.binom_test方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: binom_tost
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import binom_test [as 別名]
def binom_tost(count, nobs, low, upp):
'''exact TOST test for one proportion using binomial distribution
Parameters
----------
count : integer or array_like
the number of successes in nobs trials.
nobs : integer
the number of trials or observations.
low, upp : floats
lower and upper limit of equivalence region
Returns
-------
pvalue : float
p-value of equivalence test
pval_low, pval_upp : floats
p-values of lower and upper one-sided tests
'''
# binom_test_stat only returns pval
tt1 = binom_test(count, nobs, alternative='larger', prop=low)
tt2 = binom_test(count, nobs, alternative='smaller', prop=upp)
return np.maximum(tt1, tt2), tt1, tt2,
示例2: test_binomtest
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import binom_test [as 別名]
def test_binomtest():
# precision tests compared to R for ticket:986
pp = np.concatenate((np.linspace(0.1,0.2,5), np.linspace(0.45,0.65,5),
np.linspace(0.85,0.95,5)))
n = 501
x = 450
results = [0.0, 0.0, 1.0159969301994141e-304,
2.9752418572150531e-275, 7.7668382922535275e-250,
2.3381250925167094e-099, 7.8284591587323951e-081,
9.9155947819961383e-065, 2.8729390725176308e-050,
1.7175066298388421e-037, 0.0021070691951093692,
0.12044570587262322, 0.88154763174802508, 0.027120993063129286,
2.6102587134694721e-006]
for p, res in zip(pp,results):
assert_approx_equal(stats.binom_test(x, n, p), res,
significant=12, err_msg='fail forp=%f' % p)
assert_approx_equal(stats.binom_test(50,100,0.1), 5.8320387857343647e-024,
significant=12, err_msg='fail forp=%f' % p)
示例3: test_binomtest2
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import binom_test [as 別名]
def test_binomtest2():
# test added for issue #2384
res2 = [
[1.0, 1.0],
[0.5,1.0,0.5],
[0.25,1.00,1.00,0.25],
[0.125,0.625,1.000,0.625,0.125],
[0.0625,0.3750,1.0000,1.0000,0.3750,0.0625],
[0.03125,0.21875,0.68750,1.00000,0.68750,0.21875,0.03125],
[0.015625,0.125000,0.453125,1.000000,1.000000,0.453125,0.125000,0.015625],
[0.0078125,0.0703125,0.2890625,0.7265625,1.0000000,0.7265625,0.2890625,
0.0703125,0.0078125],
[0.00390625,0.03906250,0.17968750,0.50781250,1.00000000,1.00000000,
0.50781250,0.17968750,0.03906250,0.00390625],
[0.001953125,0.021484375,0.109375000,0.343750000,0.753906250,1.000000000,
0.753906250,0.343750000,0.109375000,0.021484375,0.001953125]
]
for k in range(1, 11):
res1 = [stats.binom_test(v, k, 0.5) for v in range(k + 1)]
assert_almost_equal(res1, res2[k-1], decimal=10)
示例4: pbinom
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import binom_test [as 別名]
def pbinom(x,n,p):
# handling special cases
if x<0:
return 0
if n<=0:
return 0
if x>n:
return 1
# use scipy.binom_test to calculate binomial test p-value
pv=binom_test(x,n,p,alternative="less")
if (1-pv)<=sys.float_info.epsilon/2:
return 1
else:
return pv
示例5: test_t_EB_coverage
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import binom_test [as 別名]
def test_t_EB_coverage(seed, alpha, N):
trials = 100
random_st = np.random.RandomState(seed)
fail = 0
for tt in range(trials):
x = random_st.randn(N)
EB = stats.t_EB(x, alpha=alpha)
mu = np.nanmean(x)
LB, UB = mu - EB, mu + EB
assert np.isfinite(LB) and np.isfinite(UB)
fail += (0.0 < LB) or (UB < 0.0)
pval = sst.binom_test(fail, trials, alpha)
assert pval >= 0.05 / 100 # Assume we run 100 times
示例6: predict
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import binom_test [as 別名]
def predict(self, x: torch.tensor, n: int, alpha: float, batch_size: int) -> int:
""" Monte Carlo algorithm for evaluating the prediction of g at x. With probability at least 1 - alpha, the
class returned by this method will equal g(x).
This function uses the hypothesis test described in https://arxiv.org/abs/1610.03944
for identifying the top category of a multinomial distribution.
:param x: the input [channel x height x width]
:param n: the number of Monte Carlo samples to use
:param alpha: the failure probability
:param batch_size: batch size to use when evaluating the base classifier
:return: the predicted class, or ABSTAIN
"""
self.base_classifier.eval()
counts = self._sample_noise(x, n, batch_size)
top2 = counts.argsort()[::-1][:2]
count1 = counts[top2[0]]
count2 = counts[top2[1]]
if binom_test(count1, count1 + count2, p=0.5) > alpha:
return Smooth.ABSTAIN
else:
return top2[0]
示例7: sign_test
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import binom_test [as 別名]
def sign_test(samp, mu0=0):
samp = np.asarray(samp)
pos = np.sum(samp > mu0)
neg = np.sum(samp < mu0)
M = (pos-neg)/2.
p = stats.binom_test(min(pos,neg), pos+neg, .5)
return M, p
示例8: test_data
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import binom_test [as 別名]
def test_data(self):
pval = stats.binom_test(100,250)
assert_almost_equal(pval,0.0018833009350757682,11)
pval = stats.binom_test(201,405)
assert_almost_equal(pval,0.92085205962670713,11)
pval = stats.binom_test([682,243],p=3.0/4)
assert_almost_equal(pval,0.38249155957481695,11)
示例9: test_bad_len_x
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import binom_test [as 別名]
def test_bad_len_x(self):
"""Length of x must be 1 or 2."""
assert_raises(ValueError, stats.binom_test, [1,2,3])
示例10: test_bad_n
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import binom_test [as 別名]
def test_bad_n(self):
"""len(x) is 1, but n is invalid."""
# Missing n
assert_raises(ValueError, stats.binom_test, [100])
# n less than x[0]
assert_raises(ValueError, stats.binom_test, [100], n=50)
示例11: test_bad_p
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import binom_test [as 別名]
def test_bad_p(self):
assert_raises(ValueError, stats.binom_test, [50, 50], p=2.0)
示例12: test_data
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import binom_test [as 別名]
def test_data(self):
pval = stats.binom_test(100, 250)
assert_almost_equal(pval, 0.0018833009350757682, 11)
pval = stats.binom_test(201, 405)
assert_almost_equal(pval, 0.92085205962670713, 11)
pval = stats.binom_test([682, 243], p=3.0/4)
assert_almost_equal(pval, 0.38249155957481695, 11)
示例13: test_bad_len_x
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import binom_test [as 別名]
def test_bad_len_x(self):
# Length of x must be 1 or 2.
assert_raises(ValueError, stats.binom_test, [1, 2, 3])
示例14: test_bad_n
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import binom_test [as 別名]
def test_bad_n(self):
# len(x) is 1, but n is invalid.
# Missing n
assert_raises(ValueError, stats.binom_test, [100])
# n less than x[0]
assert_raises(ValueError, stats.binom_test, [100], n=50)
示例15: test_alternatives
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import binom_test [as 別名]
def test_alternatives(self):
res = stats.binom_test(51, 235, p=1./6, alternative='less')
assert_almost_equal(res, 0.982022657605858)
res = stats.binom_test(51, 235, p=1./6, alternative='greater')
assert_almost_equal(res, 0.02654424571169085)
res = stats.binom_test(51, 235, p=1./6, alternative='two-sided')
assert_almost_equal(res, 0.0437479701823997)