本文整理匯總了Python中scipy.stats.binom.cdf方法的典型用法代碼示例。如果您正苦於以下問題:Python binom.cdf方法的具體用法?Python binom.cdf怎麽用?Python binom.cdf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats.binom
的用法示例。
在下文中一共展示了binom.cdf方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: cdf
# 需要導入模塊: from scipy.stats import binom [as 別名]
# 或者: from scipy.stats.binom import cdf [as 別名]
def cdf(self, y, f):
r"""
Cumulative density function of the likelihood.
Parameters
----------
y: ndarray
query quantiles, i.e.\ :math:`P(Y \leq y)`.
f: ndarray
latent function from the GLM prior (:math:`\mathbf{f} =
\boldsymbol\Phi \mathbf{w}`)
Returns
-------
cdf: ndarray
Cumulative density function evaluated at y.
"""
return bernoulli.cdf(y, expit(f))
示例2: test_shapes
# 需要導入模塊: from scipy.stats import binom [as 別名]
# 或者: from scipy.stats.binom import cdf [as 別名]
def test_shapes():
N = 100
y = np.ones(N)
f = np.ones(N) * 2
assert_shape = lambda x: x.shape == (N,)
assert_args = lambda out, args: \
all([o.shape == a.shape if not np.isscalar(a) else np.isscalar(o)
for o, a in zip(out, args)])
for like, args in zip(likelihoods, likelihood_args):
lobj = like()
assert_shape(lobj.loglike(y, f, *args))
assert_shape(lobj.Ey(f, *args))
assert_shape(lobj.df(y, f, *args))
assert_shape(lobj.cdf(y, f, *args))
assert_args(lobj.dp(y, f, *args), args)
示例3: test_bernoulli
# 需要導入模塊: from scipy.stats import binom [as 別名]
# 或者: from scipy.stats.binom import cdf [as 別名]
def test_bernoulli():
# Test we can at match a Bernoulli distribution from scipy
p = 0.5
dist = lk.Bernoulli()
x = np.array([0, 1])
p1 = bernoulli.logpmf(x, p)
p2 = dist.loglike(x, p)
np.allclose(p1, p2)
p1 = bernoulli.cdf(x, p)
p2 = dist.cdf(x, p)
np.allclose(p1, p2)
示例4: test_binom
# 需要導入模塊: from scipy.stats import binom [as 別名]
# 或者: from scipy.stats.binom import cdf [as 別名]
def test_binom():
# Test we can at match a Binomial distribution from scipy
p = 0.5
n = 5
dist = lk.Binomial()
x = np.random.randint(low=0, high=n, size=(10,))
p1 = binom.logpmf(x, p=p, n=n)
p2 = dist.loglike(x, p, n)
np.allclose(p1, p2)
p1 = binom.cdf(x, p=p, n=n)
p2 = dist.cdf(x, p, n)
np.allclose(p1, p2)
示例5: test_poisson
# 需要導入模塊: from scipy.stats import binom [as 別名]
# 或者: from scipy.stats.binom import cdf [as 別名]
def test_poisson():
# Test we can at match a Binomial distribution from scipy
mu = 2
dist = lk.Poisson()
x = np.random.randint(low=0, high=5, size=(10,))
p1 = poisson.logpmf(x, mu)
p2 = dist.loglike(x, mu)
np.allclose(p1, p2)
p1 = poisson.cdf(x, mu)
p2 = dist.cdf(x, mu)
np.allclose(p1, p2)
示例6: sign_test
# 需要導入模塊: from scipy.stats import binom [as 別名]
# 或者: from scipy.stats.binom import cdf [as 別名]
def sign_test(data):
""" Given the results drawn from two algorithms/methods X and Y, the sign test analyses if
there is a difference between X and Y.
.. note:: Null Hypothesis: Pr(X<Y)= 0.5
:param data: An (n x 2) array or DataFrame contaning the results. In data, each column represents an algorithm and, and each row a problem.
:return p_value: The associated p-value from the binomial distribution.
:return bstat: Number of successes.
"""
if type(data) == pd.DataFrame:
data = data.values
if data.shape[1] == 2:
X, Y = data[:, 0], data[:, 1]
n_perf = data.shape[0]
else:
raise ValueError(
'Initialization ERROR. Incorrect number of dimensions for axis 1')
# Compute the differences
Z = X - Y
# Compute the number of pairs Z<0
Wminus = sum(Z < 0)
# If H_0 is true ---> W follows Binomial(n,0.5)
p_value_minus = 1 - binom.cdf(k=Wminus, p=0.5, n=n_perf)
# Compute the number of pairs Z>0
Wplus = sum(Z > 0)
# If H_0 is true ---> W follows Binomial(n,0.5)
p_value_plus = 1 - binom.cdf(k=Wplus, p=0.5, n=n_perf)
p_value = 2 * min([p_value_minus, p_value_plus])
return pd.DataFrame(data=np.array([Wminus, Wplus, p_value]), index=['Num X<Y', 'Num X>Y', 'p-value'],
columns=['Results'])
示例7: friedman_test
# 需要導入模塊: from scipy.stats import binom [as 別名]
# 或者: from scipy.stats.binom import cdf [as 別名]
def friedman_test(data):
""" Friedman ranking test.
..note:: Null Hypothesis: In a set of k (>=2) treaments (or tested algorithms), all the treatments are equivalent, so their average ranks should be equal.
:param data: An (n x 2) array or DataFrame contaning the results. In data, each column represents an algorithm and, and each row a problem.
:return p_value: The associated p-value.
:return friedman_stat: Friedman's chi-square.
"""
# Initial Checking
if type(data) == pd.DataFrame:
data = data.values
if data.ndim == 2:
n_samples, k = data.shape
else:
raise ValueError(
'Initialization ERROR. Incorrect number of array dimensions')
if k < 2:
raise ValueError(
'Initialization Error. Incorrect number of dimensions for axis 1.')
# Compute ranks.
datarank = ranks(data)
# Compute for each algorithm the ranking average.
avranks = np.mean(datarank, axis=0)
# Get Friedman statistics
friedman_stat = (12.0 * n_samples) / (k * (k + 1.0)) * \
(np.sum(avranks ** 2) - (k * (k + 1) ** 2) / 4.0)
# Compute p-value
p_value = (1.0 - chi2.cdf(friedman_stat, df=(k - 1)))
return pd.DataFrame(data=np.array([friedman_stat, p_value]), index=['Friedman-statistic', 'p-value'],
columns=['Results'])
示例8: binomial_p
# 需要導入模塊: from scipy.stats import binom [as 別名]
# 或者: from scipy.stats.binom import cdf [as 別名]
def binomial_p(x, n, p, alternative='greater'):
"""
Parameters
----------
x : array-like
list of elements consisting of x in {0, 1} where 0 represents a failure and
1 represents a seccuess
p : int
hypothesized number of successes in n trials
n : int
number of trials
alternative : {'greater', 'less', 'two-sided'}
alternative hypothesis to test (default: 'greater')
Returns
-------
float
estimated p-value
"""
assert alternative in ("two-sided", "less", "greater")
if n < x:
raise ValueError("Cannot observe more successes than the population size")
plower = binom.cdf(x, n, p)
pupper = binom.sf(x-1, n, p)
if alternative == 'two-sided':
pvalue = 2*np.min([plower, pupper, 0.5])
elif alternative == 'greater':
pvalue = pupper
elif alternative == 'less':
pvalue = plower
return pvalue
示例9: test_hypergeometric
# 需要導入模塊: from scipy.stats import binom [as 別名]
# 或者: from scipy.stats.binom import cdf [as 別名]
def test_hypergeometric():
assert_almost_equal(hypergeometric(4, 10, 5, 6, 'greater'),
1-hypergeom.cdf(3, 10, 5, 6))
assert_almost_equal(hypergeometric(4, 10, 5, 6, 'less'),
hypergeom.cdf(4, 10, 5, 6))
assert_almost_equal(hypergeometric(4, 10, 5, 6, 'two-sided'),
2*(1-hypergeom.cdf(3, 10, 5, 6)))
示例10: test_binomial_p
# 需要導入模塊: from scipy.stats import binom [as 別名]
# 或者: from scipy.stats.binom import cdf [as 別名]
def test_binomial_p():
assert_almost_equal(binomial_p(5, 10, 0.5, 'greater'),
1-binom.cdf(4, 10, 0.5))
assert_almost_equal(binomial_p(5, 10, 0.5, 'less'),
binom.cdf(5, 10, 0.5))
assert_almost_equal(binomial_p(5, 10, 0.5, 'two-sided'), 1)
示例11: pbinom
# 需要導入模塊: from scipy.stats import binom [as 別名]
# 或者: from scipy.stats.binom import cdf [as 別名]
def pbinom(k, n):
"""
Compute cdf for binomial with prob = 0.5
compare to R pbinom
:param k:
:param n:
:return: cumulative probability
"""
return binom.cdf(k, n, 0.5)
示例12: calculate_present_pvalue
# 需要導入模塊: from scipy.stats import binom [as 別名]
# 或者: from scipy.stats.binom import cdf [as 別名]
def calculate_present_pvalue(mut_reads, coverage, fpr):
"""
Calculate the p-value for the given FPR and number of mutant reads and coverage at this position
:param mut_reads: number of mutant reads
:param coverage: coverage at this position
:param fpr: false-positive rate
:return: p-value
"""
return 1.0 - binom.cdf(mut_reads-1, coverage, fpr)
示例13: calculate_absent_pvalue
# 需要導入模塊: from scipy.stats import binom [as 別名]
# 或者: from scipy.stats.binom import cdf [as 別名]
def calculate_absent_pvalue(mut_reads, coverage, min_maf):
"""
Calculate the p-value that no mutation exists with a larger MAF
for the number of mutant reads and coverage at this position
P(X<=k|H_0); H_0: MAF > min_freq
min frequency already accounts for false-positives
:param mut_reads: number of mutant reads
:param coverage: coverage at this position
:param min_maf: minimal mutant allele frequency
:return: p-value
"""
return binom.cdf(mut_reads, coverage, min_maf)
示例14: friedman_aligned_rank_test
# 需要導入模塊: from scipy.stats import binom [as 別名]
# 或者: from scipy.stats.binom import cdf [as 別名]
def friedman_aligned_rank_test(data):
""" Method of aligned ranks for the Friedman test.
..note:: Null Hypothesis: In a set of k (>=2) treaments (or tested algorithms), all the treatments are equivalent, so their average ranks should be equal.
:param data: An (n x 2) array or DataFrame contaning the results. In data, each column represents an algorithm and, and each row a problem.
:return p_value: The associated p-value.
:return aligned_rank_stat: Friedman's aligned rank chi-square statistic.
"""
# Initial Checking
if type(data) == pd.DataFrame:
data = data.values
if data.ndim == 2:
n_samples, k = data.shape
else:
raise ValueError(
'Initialization ERROR. Incorrect number of array dimensions')
if k < 2:
raise ValueError(
'Initialization Error. Incorrect number of dimensions for axis 1.')
# Compute the average value achieved by all algorithms in each problem
control = np.mean(data, axis=1)
# Compute the difference between control an data
diff = [data[:, j] - control for j in range(data.shape[1])]
# rank diff
alignedRanks = ranks(np.ravel(diff))
alignedRanks = np.reshape(alignedRanks, newshape=(n_samples, k), order='F')
# Compute statistic
Rhat_i = np.sum(alignedRanks, axis=1)
Rhat_j = np.sum(alignedRanks, axis=0)
si, sj = np.sum(Rhat_i ** 2), np.sum(Rhat_j ** 2)
A = sj - (k * n_samples ** 2 / 4.0) * (k * n_samples + 1) ** 2
B1 = (k * n_samples * (k * n_samples + 1) * (2 * k * n_samples + 1) / 6.0)
B2 = si / float(k)
alignedRanks_stat = ((k - 1) * A) / (B1 - B2)
p_value = 1 - chi2.cdf(alignedRanks_stat, df=k - 1)
return pd.DataFrame(data=np.array([alignedRanks_stat, p_value]), index=['Aligned Rank stat', 'p-value'],
columns=['Results'])
示例15: quade_test
# 需要導入模塊: from scipy.stats import binom [as 別名]
# 或者: from scipy.stats.binom import cdf [as 別名]
def quade_test(data):
""" Quade test.
..note:: Null Hypothesis: In a set of k (>=2) treaments (or tested algorithms), all the treatments are equivalent, so their average ranks should be equal.
:param data: An (n x 2) array or DataFrame contaning the results. In data, each column represents an algorithm and, and each row a problem.
:return p_value: The associated p-value from the F-distribution.
:return fq: Computed F-value.
"""
# Initial Checking
if type(data) == pd.DataFrame:
data = data.values
if data.ndim == 2:
n_samples, k = data.shape
else:
raise ValueError(
'Initialization ERROR. Incorrect number of array dimensions')
if k < 2:
raise ValueError(
'Initialization Error. Incorrect number of dimensions for axis 1.')
# Compute ranks.
datarank = ranks(data)
# Compute the range of each problem
problemRange = np.max(data, axis=1) - np.min(data, axis=1)
# Compute problem rank
problemRank = ranks(problemRange)
# Compute S_stat: weight of each observation within the problem, adjusted to reflect
# the significance of the problem when it appears.
S_stat = np.zeros((n_samples, k))
for i in range(n_samples):
S_stat[i, :] = problemRank[i] * (datarank[i, :] - 0.5 * (k + 1))
Salg = np.sum(S_stat, axis=0)
# Compute Fq (Quade Test statistic) and associated p_value
A = np.sum(S_stat ** 2)
B = np.sum(Salg ** 2) / float(n_samples)
if A == B:
Fq = np.Inf
p_value = (1 / (np.math.factorial(k))) ** (n_samples - 1)
else:
Fq = (n_samples - 1.0) * B / (A - B)
p_value = 1 - f.cdf(Fq, k - 1, (k - 1) * (n_samples - 1))
return pd.DataFrame(data=np.array([Fq, p_value]), index=['Quade Test statistic', 'p-value'], columns=['Results'])