本文整理匯總了Python中scipy.stats.bernoulli方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.bernoulli方法的具體用法?Python stats.bernoulli怎麽用?Python stats.bernoulli使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats
的用法示例。
在下文中一共展示了stats.bernoulli方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_nan_arguments_gh_issue_1362
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import bernoulli [as 別名]
def test_nan_arguments_gh_issue_1362():
assert_(np.isnan(stats.t.logcdf(1, np.nan)))
assert_(np.isnan(stats.t.cdf(1, np.nan)))
assert_(np.isnan(stats.t.logsf(1, np.nan)))
assert_(np.isnan(stats.t.sf(1, np.nan)))
assert_(np.isnan(stats.t.pdf(1, np.nan)))
assert_(np.isnan(stats.t.logpdf(1, np.nan)))
assert_(np.isnan(stats.t.ppf(1, np.nan)))
assert_(np.isnan(stats.t.isf(1, np.nan)))
assert_(np.isnan(stats.bernoulli.logcdf(np.nan, 0.5)))
assert_(np.isnan(stats.bernoulli.cdf(np.nan, 0.5)))
assert_(np.isnan(stats.bernoulli.logsf(np.nan, 0.5)))
assert_(np.isnan(stats.bernoulli.sf(np.nan, 0.5)))
assert_(np.isnan(stats.bernoulli.pmf(np.nan, 0.5)))
assert_(np.isnan(stats.bernoulli.logpmf(np.nan, 0.5)))
assert_(np.isnan(stats.bernoulli.ppf(np.nan, 0.5)))
assert_(np.isnan(stats.bernoulli.isf(np.nan, 0.5)))
示例2: setUp_configure
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import bernoulli [as 別名]
def setUp_configure(self):
from scipy import stats
self.dist = distributions.Bernoulli
self.scipy_dist = stats.bernoulli
self.options = {'binary_check': self.binary_check}
self.test_targets = set([
'batch_shape', 'entropy', 'log_prob', 'mean', 'prob', 'sample',
'stddev', 'support', 'variance'])
if self.extreme_values:
p = numpy.random.randint(0, 2, self.shape).astype(numpy.float32)
else:
p = numpy.random.uniform(0, 1, self.shape).astype(numpy.float32)
self.params = {'p': p}
self.scipy_params = {'p': p}
self.support = '{0, 1}'
self.continuous = False
self.old_settings = None
if self.extreme_values:
self.old_settings = numpy.seterr(divide='ignore', invalid='ignore')
示例3: test_nan_arguments_gh_issue_1362
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import bernoulli [as 別名]
def test_nan_arguments_gh_issue_1362():
with np.errstate(invalid='ignore'):
assert_(np.isnan(stats.t.logcdf(1, np.nan)))
assert_(np.isnan(stats.t.cdf(1, np.nan)))
assert_(np.isnan(stats.t.logsf(1, np.nan)))
assert_(np.isnan(stats.t.sf(1, np.nan)))
assert_(np.isnan(stats.t.pdf(1, np.nan)))
assert_(np.isnan(stats.t.logpdf(1, np.nan)))
assert_(np.isnan(stats.t.ppf(1, np.nan)))
assert_(np.isnan(stats.t.isf(1, np.nan)))
assert_(np.isnan(stats.bernoulli.logcdf(np.nan, 0.5)))
assert_(np.isnan(stats.bernoulli.cdf(np.nan, 0.5)))
assert_(np.isnan(stats.bernoulli.logsf(np.nan, 0.5)))
assert_(np.isnan(stats.bernoulli.sf(np.nan, 0.5)))
assert_(np.isnan(stats.bernoulli.pmf(np.nan, 0.5)))
assert_(np.isnan(stats.bernoulli.logpmf(np.nan, 0.5)))
assert_(np.isnan(stats.bernoulli.ppf(np.nan, 0.5)))
assert_(np.isnan(stats.bernoulli.isf(np.nan, 0.5)))
示例4: __init__
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import bernoulli [as 別名]
def __init__(self, parameters, name='Bernoulli'):
"""This class implements a probabilistic model following a bernoulli distribution.
Parameters
----------
parameters: list
A list containing one entry, the probability of the distribution.
name: string
The name that should be given to the probabilistic model in the journal file.
"""
if not isinstance(parameters, list):
raise TypeError('Input for Bernoulli has to be of type list.')
if len(parameters)!=1:
raise ValueError('Input for Bernoulli has to be of length 1.')
self._dimension = len(parameters)
input_parameters = InputConnector.from_list(parameters)
super(Bernoulli, self).__init__(input_parameters, name)
self.visited = False
示例5: forward_simulate
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import bernoulli [as 別名]
def forward_simulate(self, input_values, k, rng=np.random.RandomState(), mpi_comm=None):
"""
Samples from the bernoulli distribution associtated with the probabilistic model.
Parameters
----------
input_values: list
List of input parameters, in the same order as specified in the InputConnector passed to the init function
k: integer
The number of samples to be drawn.
rng: random number generator
The random number generator to be used.
Returns
-------
list: [np.ndarray]
A list containing the sampled values as np-array.
"""
result = np.array(rng.binomial(1, input_values[0], k))
return [np.array([x]) for x in result]
示例6: pmf
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import bernoulli [as 別名]
def pmf(self, input_values, x):
"""Evaluates the probability mass function at point x.
Parameters
----------
input_values: list
List of input parameters, in the same order as specified in the InputConnector passed to the init function
x: float
The point at which the pmf should be evaluated.
Returns
-------
float:
The pmf evaluated at point x.
"""
probability = input_values[0]
pmf = bernoulli(probability).pmf(x)
self.calculated_pmf = pmf
return pmf
示例7: bernoulli_pmf
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import bernoulli [as 別名]
def bernoulli_pmf(p=0.0):
"""
伯努利分布,隻有一個參數
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bernoulli.html#scipy.stats.bernoulli
:param p: 試驗成功的概率,或結果為1的概率
:return:
"""
ber_dist = stats.bernoulli(p)
x = [0, 1]
x_name = ['0', '1']
pmf = [ber_dist.pmf(x[0]), ber_dist.pmf(x[1])]
plt.bar(x, pmf, width=0.15)
plt.xticks(x, x_name)
plt.ylabel('Probability')
plt.title('PMF of bernoulli distribution')
plt.show()
# bernoulli_pmf(p=0.3)
示例8: test_rvs
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import bernoulli [as 別名]
def test_rvs(self):
vals = stats.bernoulli.rvs(0.75, size=(2, 50))
assert_(numpy.all(vals >= 0) & numpy.all(vals <= 1))
assert_(numpy.shape(vals) == (2, 50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.bernoulli.rvs(0.75)
assert_(isinstance(val, int))
val = stats.bernoulli(0.75).rvs(3)
assert_(isinstance(val, numpy.ndarray))
assert_(val.dtype.char in typecodes['AllInteger'])
示例9: test_entropy
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import bernoulli [as 別名]
def test_entropy(self):
# Simple tests of entropy.
b = stats.bernoulli(0.25)
expected_h = -0.25*np.log(0.25) - 0.75*np.log(0.75)
h = b.entropy()
assert_allclose(h, expected_h)
b = stats.bernoulli(0.0)
h = b.entropy()
assert_equal(h, 0.0)
b = stats.bernoulli(1.0)
h = b.entropy()
assert_equal(h, 0.0)
示例10: test_docstrings
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import bernoulli [as 別名]
def test_docstrings(self):
# See ticket #761
if stats.rayleigh.__doc__ is not None:
self.assertTrue("rayleigh" in stats.rayleigh.__doc__.lower())
if stats.bernoulli.__doc__ is not None:
self.assertTrue("bernoulli" in stats.bernoulli.__doc__.lower())
示例11: test_parameters_sampler_replacement
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import bernoulli [as 別名]
def test_parameters_sampler_replacement():
# raise warning if n_iter is bigger than total parameter space
params = {'first': [0, 1], 'second': ['a', 'b', 'c']}
sampler = ParameterSampler(params, n_iter=7)
n_iter = 7
grid_size = 6
expected_warning = ('The total space of parameters %d is smaller '
'than n_iter=%d. Running %d iterations. For '
'exhaustive searches, use GridSearchCV.'
% (grid_size, n_iter, grid_size))
assert_warns_message(UserWarning, expected_warning,
list, sampler)
# degenerates to GridSearchCV if n_iter the same as grid_size
sampler = ParameterSampler(params, n_iter=6)
samples = list(sampler)
assert_equal(len(samples), 6)
for values in ParameterGrid(params):
assert values in samples
# test sampling without replacement in a large grid
params = {'a': range(10), 'b': range(10), 'c': range(10)}
sampler = ParameterSampler(params, n_iter=99, random_state=42)
samples = list(sampler)
assert_equal(len(samples), 99)
hashable_samples = ["a%db%dc%d" % (p['a'], p['b'], p['c'])
for p in samples]
assert_equal(len(set(hashable_samples)), 99)
# doesn't go into infinite loops
params_distribution = {'first': bernoulli(.5), 'second': ['a', 'b', 'c']}
sampler = ParameterSampler(params_distribution, n_iter=7)
samples = list(sampler)
assert_equal(len(samples), 7)
示例12: check_forward
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import bernoulli [as 別名]
def check_forward(self, logit_data, x_data):
distributions.bernoulli._bernoulli_log_prob(logit_data, x_data)
示例13: check_backward
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import bernoulli [as 別名]
def check_backward(self, logit_data, x_data, y_grad):
def f(logit):
return distributions.bernoulli._bernoulli_log_prob(
logit, x_data)
gradient_check.check_backward(
f, logit_data, y_grad, **self.backward_options)
示例14: check_double_backward
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import bernoulli [as 別名]
def check_double_backward(self, logit_data, x_data, y_grad, x_grad_grad):
def f(logit):
return distributions.bernoulli._bernoulli_log_prob(
logit, x_data)
gradient_check.check_double_backward(
f, logit_data, y_grad, x_grad_grad, dtype=numpy.float64,
**self.backward_options)
示例15: test_backward_where_logit_has_infinite_values
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import bernoulli [as 別名]
def test_backward_where_logit_has_infinite_values(self):
self.logit[...] = numpy.inf
with numpy.errstate(invalid='ignore'):
log_prob = distributions.bernoulli._bernoulli_log_prob(
self.logit, self.x)
# just confirm that the backward method runs without raising error.
log_prob.backward()