本文整理匯總了Python中scipy.stats.anderson_ksamp方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.anderson_ksamp方法的具體用法?Python stats.anderson_ksamp怎麽用?Python stats.anderson_ksamp使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats
的用法示例。
在下文中一共展示了stats.anderson_ksamp方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_example1a
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import anderson_ksamp [as 別名]
def test_example1a(self):
# Example data from Scholz & Stephens (1987), originally
# published in Lehmann (1995, Nonparametrics, Statistical
# Methods Based on Ranks, p. 309)
# Pass a mixture of lists and arrays
t1 = [38.7, 41.5, 43.8, 44.5, 45.5, 46.0, 47.7, 58.0]
t2 = np.array([39.2, 39.3, 39.7, 41.4, 41.8, 42.9, 43.3, 45.8])
t3 = np.array([34.0, 35.0, 39.0, 40.0, 43.0, 43.0, 44.0, 45.0])
t4 = np.array([34.0, 34.8, 34.8, 35.4, 37.2, 37.8, 41.2, 42.8])
assert_warns(UserWarning, stats.anderson_ksamp, (t1, t2, t3, t4),
midrank=False)
with suppress_warnings() as sup:
sup.filter(UserWarning, message='approximate p-value')
Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4), midrank=False)
assert_almost_equal(Tk, 4.449, 3)
assert_array_almost_equal([0.4985, 1.3237, 1.9158, 2.4930, 3.2459],
tm, 4)
assert_almost_equal(p, 0.0021, 4)
示例2: test_example1b
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import anderson_ksamp [as 別名]
def test_example1b(self):
# Example data from Scholz & Stephens (1987), originally
# published in Lehmann (1995, Nonparametrics, Statistical
# Methods Based on Ranks, p. 309)
# Pass arrays
t1 = np.array([38.7, 41.5, 43.8, 44.5, 45.5, 46.0, 47.7, 58.0])
t2 = np.array([39.2, 39.3, 39.7, 41.4, 41.8, 42.9, 43.3, 45.8])
t3 = np.array([34.0, 35.0, 39.0, 40.0, 43.0, 43.0, 44.0, 45.0])
t4 = np.array([34.0, 34.8, 34.8, 35.4, 37.2, 37.8, 41.2, 42.8])
with suppress_warnings() as sup:
sup.filter(UserWarning, message='approximate p-value')
Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4), midrank=True)
assert_almost_equal(Tk, 4.480, 3)
assert_array_almost_equal([0.4985, 1.3237, 1.9158, 2.4930, 3.2459],
tm, 4)
assert_almost_equal(p, 0.0020, 4)
示例3: test_result_attributes
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import anderson_ksamp [as 別名]
def test_result_attributes(self):
# Example data from Scholz & Stephens (1987), originally
# published in Lehmann (1995, Nonparametrics, Statistical
# Methods Based on Ranks, p. 309)
# Pass a mixture of lists and arrays
t1 = [38.7, 41.5, 43.8, 44.5, 45.5, 46.0, 47.7, 58.0]
t2 = np.array([39.2, 39.3, 39.7, 41.4, 41.8, 42.9, 43.3, 45.8])
t3 = np.array([34.0, 35.0, 39.0, 40.0, 43.0, 43.0, 44.0, 45.0])
t4 = np.array([34.0, 34.8, 34.8, 35.4, 37.2, 37.8, 41.2, 42.8])
with suppress_warnings() as sup:
sup.filter(UserWarning, message='approximate p-value')
res = stats.anderson_ksamp((t1, t2, t3, t4), midrank=False)
attributes = ('statistic', 'critical_values', 'significance_level')
check_named_results(res, attributes)
示例4: test_example2a
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import anderson_ksamp [as 別名]
def test_example2a(self):
# Example data taken from an earlier technical report of
# Scholz and Stephens
# Pass lists instead of arrays
t1 = [194, 15, 41, 29, 33, 181]
t2 = [413, 14, 58, 37, 100, 65, 9, 169, 447, 184, 36, 201, 118]
t3 = [34, 31, 18, 18, 67, 57, 62, 7, 22, 34]
t4 = [90, 10, 60, 186, 61, 49, 14, 24, 56, 20, 79, 84, 44, 59, 29,
118, 25, 156, 310, 76, 26, 44, 23, 62]
t5 = [130, 208, 70, 101, 208]
t6 = [74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27]
t7 = [55, 320, 56, 104, 220, 239, 47, 246, 176, 182, 33]
t8 = [23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5,
12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95]
t9 = [97, 51, 11, 4, 141, 18, 142, 68, 77, 80, 1, 16, 106, 206, 82,
54, 31, 216, 46, 111, 39, 63, 18, 191, 18, 163, 24]
t10 = [50, 44, 102, 72, 22, 39, 3, 15, 197, 188, 79, 88, 46, 5, 5, 36,
22, 139, 210, 97, 30, 23, 13, 14]
t11 = [359, 9, 12, 270, 603, 3, 104, 2, 438]
t12 = [50, 254, 5, 283, 35, 12]
t13 = [487, 18, 100, 7, 98, 5, 85, 91, 43, 230, 3, 130]
t14 = [102, 209, 14, 57, 54, 32, 67, 59, 134, 152, 27, 14, 230, 66,
61, 34]
with suppress_warnings() as sup:
sup.filter(UserWarning, message='approximate p-value')
Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4, t5, t6, t7, t8,
t9, t10, t11, t12, t13, t14),
midrank=False)
assert_almost_equal(Tk, 3.288, 3)
assert_array_almost_equal([0.5990, 1.3269, 1.8052, 2.2486, 2.8009],
tm, 4)
assert_almost_equal(p, 0.0041, 4)
示例5: test_example2b
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import anderson_ksamp [as 別名]
def test_example2b(self):
# Example data taken from an earlier technical report of
# Scholz and Stephens
t1 = [194, 15, 41, 29, 33, 181]
t2 = [413, 14, 58, 37, 100, 65, 9, 169, 447, 184, 36, 201, 118]
t3 = [34, 31, 18, 18, 67, 57, 62, 7, 22, 34]
t4 = [90, 10, 60, 186, 61, 49, 14, 24, 56, 20, 79, 84, 44, 59, 29,
118, 25, 156, 310, 76, 26, 44, 23, 62]
t5 = [130, 208, 70, 101, 208]
t6 = [74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27]
t7 = [55, 320, 56, 104, 220, 239, 47, 246, 176, 182, 33]
t8 = [23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5,
12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95]
t9 = [97, 51, 11, 4, 141, 18, 142, 68, 77, 80, 1, 16, 106, 206, 82,
54, 31, 216, 46, 111, 39, 63, 18, 191, 18, 163, 24]
t10 = [50, 44, 102, 72, 22, 39, 3, 15, 197, 188, 79, 88, 46, 5, 5, 36,
22, 139, 210, 97, 30, 23, 13, 14]
t11 = [359, 9, 12, 270, 603, 3, 104, 2, 438]
t12 = [50, 254, 5, 283, 35, 12]
t13 = [487, 18, 100, 7, 98, 5, 85, 91, 43, 230, 3, 130]
t14 = [102, 209, 14, 57, 54, 32, 67, 59, 134, 152, 27, 14, 230, 66,
61, 34]
with suppress_warnings() as sup:
sup.filter(UserWarning, message='approximate p-value')
Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4, t5, t6, t7, t8,
t9, t10, t11, t12, t13, t14),
midrank=True)
assert_almost_equal(Tk, 3.294, 3)
assert_array_almost_equal([0.5990, 1.3269, 1.8052, 2.2486, 2.8009],
tm, 4)
assert_almost_equal(p, 0.0041, 4)
示例6: test_not_enough_samples
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import anderson_ksamp [as 別名]
def test_not_enough_samples(self):
assert_raises(ValueError, stats.anderson_ksamp, np.ones(5))
示例7: test_empty_sample
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import anderson_ksamp [as 別名]
def test_empty_sample(self):
assert_raises(ValueError, stats.anderson_ksamp, (np.ones(5), []))
示例8: test_overflow
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import anderson_ksamp [as 別名]
def test_overflow(self):
# when significance_level approximation overflows, should still return
with suppress_warnings() as sup:
sup.filter(UserWarning, message='approximate p-value')
res = stats.anderson_ksamp([[-20, -10] * 100, [-10, 40, 12] * 100])
assert_almost_equal(res[0], 272.796, 3)
示例9: anderson_ksamp
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import anderson_ksamp [as 別名]
def anderson_ksamp(self, fD1, fD2):
"""
Anderson Darling Test
"""
return stats.anderson_ksamp([fD1, fD2])
示例10: _test_impl
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import anderson_ksamp [as 別名]
def _test_impl(self, data1: t.List[Number], data2: t.List[Number]) -> float:
return max(st.anderson_ksamp([data1, data2])[-1], 1)
示例11: testCompletedCumulatives
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import anderson_ksamp [as 別名]
def testCompletedCumulatives(data, method = 'AndersonDarling', offset = None, plot = False):
"""Test if data sets have the same number / intensity distribution by adding max intensity counts to the smaller sized data sets and performing a distribution comparison test"""
#idea: fill up data points to the same numbers at the high intensity values and use KS test
#cf. work in progress on thoouroghly testing the differences in histograms
#fill up the low count data
n = numpy.array([x.size for x in data]);
nm = n.max();
m = numpy.array([x.max() for x in data]);
mm = m.max();
k = n.size;
#print nm, mm, k
if offset is None:
#assume data starts at 0 !
offset = mm / nm; #ideall for all statistics this should be mm + eps to have as little influence as possible.
datac = [x.copy() for x in data];
for i in range(m.size):
if n[i] < nm:
datac[i] = numpy.concatenate((datac[i], numpy.ones(nm-n[i], dtype = datac[i].dtype) * (mm + offset))); # + 10E-5 * numpy.random.rand(nm-n[i])));
#test by plotting
if plot is True:
import matplotlib.pyplot as plt;
for i in range(m.size):
datac[i].sort();
plt.step(datac[i], numpy.arange(datac[i].size));
#perfomr the tests
if method == 'KolmogorovSmirnov' or method == 'KS':
if k == 2:
(s, p) = stats.ks_2samp(datac[0], datac[1]);
else:
raise RuntimeError('KolmogorovSmirnov only for 2 samples not %d' % k);
elif method == 'CramervonMises' or method == 'CM':
if k == 2:
(s,p) = stats2.testCramerVonMises2Sample(datac[0], datac[1]);
else:
raise RuntimeError('CramervonMises only for 2 samples not %d' % k);
elif method == 'AndersonDarling' or method == 'AD':
(s,a,p) = stats.anderson_ksamp(datac);
return (p,s);
示例12: testCompletedInvertedCumulatives
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import anderson_ksamp [as 別名]
def testCompletedInvertedCumulatives(data, method = 'AndersonDarling', offset = None, plot = False):
"""Test if data sets have the same number / intensity distribution by adding zero intensity counts to the smaller sized data sets and performing a distribution comparison test on the reversed cumulative distribution"""
#idea: fill up data points to the same numbers at the high intensity values and use KS test
#cf. work in progress on thoouroghly testing the differences in histograms
#fill up the low count data
n = numpy.array([x.size for x in data]);
nm = n.max();
m = numpy.array([x.max() for x in data]);
mm = m.max();
k = n.size;
#print nm, mm, k
if offset is None:
#assume data starts at 0 !
offset = mm / nm; #ideall for all statistics this should be mm + eps to have as little influence as possible.
datac = [x.copy() for x in data];
for i in range(m.size):
if n[i] < nm:
datac[i] = numpy.concatenate((-datac[i], numpy.ones(nm-n[i], dtype = datac[i].dtype) * (offset))); # + 10E-5 * numpy.random.rand(nm-n[i])));
else:
datac[i] = -datac[i];
#test by plotting
if plot is True:
import matplotlib.pyplot as plt;
for i in range(m.size):
datac[i].sort();
plt.step(datac[i], numpy.arange(datac[i].size));
#perfomr the tests
if method == 'KolmogorovSmirnov' or method == 'KS':
if k == 2:
(s, p) = stats.ks_2samp(datac[0], datac[1]);
else:
raise RuntimeError('KolmogorovSmirnov only for 2 samples not %d' % k);
elif method == 'CramervonMises' or method == 'CM':
if k == 2:
(s,p) = stats2.testCramerVonMises2Sample(datac[0], datac[1]);
else:
raise RuntimeError('CramervonMises only for 2 samples not %d' % k);
elif method == 'AndersonDarling' or method == 'AD':
(s,a,p) = stats.anderson_ksamp(datac);
return (p,s);