本文整理匯總了Python中scipy.sqrt方法的典型用法代碼示例。如果您正苦於以下問題:Python scipy.sqrt方法的具體用法?Python scipy.sqrt怎麽用?Python scipy.sqrt使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy
的用法示例。
在下文中一共展示了scipy.sqrt方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: up_and_out_call
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sqrt [as 別名]
def up_and_out_call(s0,x,T,r,sigma,n_simulation,barrier):
n_steps=100.
dt=T/n_steps
total=0
for j in sp.arange(0, n_simulation):
sT=s0
out=False
for i in range(0,int(n_steps)):
e=sp.random.normal()
sT*=sp.exp((r-0.5*sigma*sigma)*dt+sigma*e*sp.sqrt(dt))
if sT>barrier:
out=True
if out==False:
total+=bsCall(s0,x,T,r,sigma)
return total/n_simulation
#
示例2: implied_vol_call_min
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sqrt [as 別名]
def implied_vol_call_min(S,X,T,r,c):
from scipy import log,exp,sqrt,stats
implied_vol=1.0
min_value=1000
for i in range(10000):
sigma=0.0001*(i+1)
d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))
d2 = d1-sigma*sqrt(T)
c2=S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2)
abs_diff=abs(c2-c)
if abs_diff<min_value:
min_value=abs_diff
implied_vol=sigma
k=i
return implied_vol
# Step 3: get call option data
開發者ID:PacktPublishing,項目名稱:Python-for-Finance-Second-Edition,代碼行數:20,代碼來源:c10_37_volatility_smile.py
示例3: lookback_min_price_as_strike
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sqrt [as 別名]
def lookback_min_price_as_strike(s,T,r,sigma,n_simulation):
n_steps=100
dt=T/n_steps
total=0
for j in range(n_simulation):
min_price=100000. # a very big number
sT=s
for i in range(int(n_steps)):
e=sp.random.normal()
sT*=sp.exp((r-0.5*sigma*sigma)*dt+sigma*e*sp.sqrt(dt))
if sT<min_price:
min_price=sT
#print 'j=',j,'i=',i,'total=',total
total+=p4f.bs_call(s,min_price,T,r,sigma)
return total/n_simulation
#
開發者ID:PacktPublishing,項目名稱:Python-for-Finance-Second-Edition,代碼行數:19,代碼來源:c14_20_lookback_min_price_as_strike.py
示例4: up_and_out_call
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sqrt [as 別名]
def up_and_out_call(s0,x,T,r,sigma,n_simulation,barrier):
n_steps=100.
dt=T/n_steps
total=0
for j in range(0, n_simulation):
sT=s0
out=False
for i in range(0,int(n_steps)):
e=sp.random.normal()
sT*=sp.exp((r-0.5*sigma*sigma)*dt+sigma*e*sp.sqrt(dt))
if sT>barrier:
out=True
if out==False:
total+=p4f.bs_call(s0,x,T,r,sigma)
return total/n_simulation
#
開發者ID:PacktPublishing,項目名稱:Python-for-Finance-Second-Edition,代碼行數:18,代碼來源:c14_26_up_and_out_call2.py
示例5: KMV_f
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sqrt [as 別名]
def KMV_f(E,D,T,r,sigmaE):
n=10000
m=2000
diffOld=1e6 # a very big number
for i in sp.arange(1,10):
for j in sp.arange(1,m):
A=E+D/2+i*D/n
sigmaA=0.05+j*(1.0-0.001)/m
d1 = (log(A/D)+(r+sigmaA*sigmaA/2.)*T)/(sigmaA*sqrt(T))
d2 = d1-sigmaA*sqrt(T)
diff4E= (A*N(d1)-D*exp(-r*T)*N(d2)-E)/A # scale by assets
diff4A= A/E*N(d1)*sigmaA-sigmaE # a small number already
diffNew=abs(diff4E)+abs(diff4A)
if diffNew<diffOld:
diffOld=diffNew
output=(round(A,2),round(sigmaA,4),round(diffNew,5))
return output
#
示例6: _column_covariances
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sqrt [as 別名]
def _column_covariances(X, uniformity_thresh):
"""."""
Xvert = _high_frequency_vert(X, sigma=4.0)
Xvertp = _high_frequency_vert(X, sigma=3.0)
models = []
use_C = []
for i in range(X.shape[2]):
xsub = Xvert[:, :, i]
xsubp = Xvertp[:, :, i]
mu = xsub.mean(axis=0)
dists = s.sqrt(pow((xsub - mu), 2).sum(axis=1))
distsp = s.sqrt(pow((xsubp - mu), 2).sum(axis=1))
thresh = _percentile(dists, 95.0)
uthresh = dists * uniformity_thresh
#use = s.logical_and(dists<thresh, abs(dists-distsp) < uthresh)
use = dists < thresh
C = s.cov(xsub[use, :], rowvar=False)
[U, V, D] = svd(C)
V[V < 1e-8] = 1e-8
C = U.dot(s.diagflat(V)).dot(D)
models.append(C)
use_C.append(use)
return s.array(models), Xvert, Xvertp, s.array(use_C).T
示例7: generate_data
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sqrt [as 別名]
def generate_data(N, S, L):
# generate genetics
G = 1.0 * (sp.rand(N, S) < 0.2)
G -= G.mean(0)
G /= G.std(0) * sp.sqrt(G.shape[1])
# generate latent phenotypes
Zg = sp.dot(G, sp.randn(G.shape[1], L))
Zn = sp.randn(N, L)
# generate variance exapleind
vg = sp.linspace(0.8, 0, L)
# rescale and sum
Zg *= sp.sqrt(vg / Zg.var(0))
Zn *= sp.sqrt((1 - vg) / Zn.var(0))
Z = Zg + Zn
return Z, G
示例8: ldpred_fast
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sqrt [as 別名]
def ldpred_fast(betas_blup, h2=None, Ns=None, p_c=None):
"""
LDpred-fast
Joel Mefford's sparsified BLUP shrink.
"""
M = len(betas_blup)
h2mn = h2+M/Ns
h2mpn = h2+(M*p_c)/Ns
C1 = h2mn/h2mpn
C2 = h2/h2mn
V_nc = (C2/Ns)*(1-C2*h2)
V_c = C2*(h2/(M*p_c))+V_nc
P_beta_ncaus = stats.norm.pdf(betas_blup,scale=sp.sqrt(V_nc))
P_beta_caus = stats.norm.pdf(betas_blup,scale=sp.sqrt(V_c))
P_caus_beta = P_beta_caus *p_c/(P_beta_caus *p_c + P_beta_ncaus *(1-p_c))
beta_jms = betas_blup * C1 * P_caus_beta
return beta_jms
示例9: get_beta
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sqrt [as 別名]
def get_beta(pval_read, raw_beta, beta_read, line_dict, header_dict, se,
z_from_se, N, eff_type, se_inferred_zscores):
if eff_type=='BLUP':
return raw_beta
if z_from_se:
assert se in header_dict, "SE was not specified in summary statistics provided, which is necessary when the 'z_from_se' flag is used."
se_read = float(line_dict[header_dict[se]])
if se_read==0 or not isfinite(se_read):
return None
se_inferred_zscores += 1
return get_beta_from_se(beta_read, se_read, eff_type, raw_beta, N)
else:
if pval_read==0 or not isfinite(stats.norm.ppf(pval_read)):
#Attempt to Parse SEs to infer Z-score
if not se in header_dict:
return None
else:
se_read = float(line_dict[header_dict[se]])
if se_read==0 or not isfinite(se_read):
return None
se_inferred_zscores += 1
return get_beta_from_se(beta_read, se_read, eff_type, raw_beta, N)
else:
return sp.sign(raw_beta) * stats.norm.ppf(pval_read / 2.0)/ sp.sqrt(N)
示例10: compute_residuals
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sqrt [as 別名]
def compute_residuals(self):
"""Compute residuals and stopping thresholds."""
if self.opt['AutoRho', 'StdResiduals']:
r = linalg.norm(self.rsdl_r(self.AXnr, self.Y))
s = linalg.norm(self.rsdl_s(self.Yprev, self.Y))
epri = scipy.sqrt(self.Nc)*self.opt['AbsStopTol'] + \
self.rsdl_rn(self.AXnr, self.Y)*self.opt['RelStopTol']
edua = scipy.sqrt(self.Nx)*self.opt['AbsStopTol'] + \
self.rsdl_sn(self.U)*self.opt['RelStopTol']
else:
rn = self.rsdl_rn(self.AXnr, self.Y)
if rn == 0.0:
rn = 1.0
sn = self.rsdl_sn(self.U)
if sn == 0.0:
sn = 1.0
r = linalg.norm(self.rsdl_r(self.AXnr, self.Y)) / rn
s = linalg.norm(self.rsdl_s(self.Yprev, self.Y)) / sn
epri = scipy.sqrt(self.Nc)*self.opt['AbsStopTol']/rn + \
self.opt['RelStopTol']
edua = scipy.sqrt(self.Nx)*self.opt['AbsStopTol']/sn + \
self.opt['RelStopTol']
return r, s, epri, edua
示例11: _fug
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sqrt [as 別名]
def _fug(self, Z, xi):
rho=self.P.atm/Z/R_atml/self.T
tita=[]
for i in range(len(self.componente)):
suma=0
for j in range(len(self.componente)):
suma+=xi[j]*(-self.Ao**0.5*self.Aoi[i]**0.5*(1-self.kij[i][j]) \
- self.Co**0.5*self.Coi[i]**0.5*(1-self.kij[i][j])**3/self.T**2 \
+ self.Do**0.5*self.Doi[i]**0.5*(1-self.kij[i][j])**4/self.T**3 \
- self.Eo**0.5*self.Eoi[i]**0.5*(1-self.kij[i][j])**5/self.T**4)
# print suma
lo=R_atml*self.T*log(rho*R_atml*self.T*xi[i]) \
+ rho*(self.Bo+self.Boi[i])*R_atml*self.T \
+ 2*rho*suma \
+ rho**2/2*(3*(self.b**2*self.bi[i])**(1./3)*R_atml*self.T-3*(self.a**2*self.ai[i])**(1./3)-3*(self.d**2*self.di[i])**(1./3)/self.T) \
+ self.alfa*rho**5/5*(3*(self.a**2*self.ai[i])**(1./3)+3*(self.d**2*self.di[i])**(1./3)/self.T) \
+ 3*rho**5/5*(self.a+self.d/self.T)*(self.alfa**2*self.alfai[i])**(1./3) \
+ 3*(self.c**2*self.ci[i])**(1./3)*rho**2/self.T**2*((1-exp(-self.gamma*rho**2))/self.gamma/rho**2-exp(-self.gamma*rho**2)/2) \
- (2*self.c*sqrt(self.gammai[i]/self.gamma)**0.5/self.gamma/self.T**2)*((1-exp(-self.gamma*rho**2))*(1+self.gamma*rho**2+self.gamma**2*rho**4/2))
tita.append(exp(lo/R_atml/self.T))
return tita
示例12: euclidean
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sqrt [as 別名]
def euclidean(h1, h2): # 9 us @array, 33 us @list \w 100 bins
r"""
Equal to Minowski distance with :math:`p=2`.
See also
--------
minowski
"""
h1, h2 = __prepare_histogram(h1, h2)
return math.sqrt(scipy.sum(scipy.square(scipy.absolute(h1 - h2))))
示例13: quadratic_forms
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sqrt [as 別名]
def quadratic_forms(h1, h2):
r"""
Quadrativ forms metric.
Notes
-----
UNDER DEVELOPMENT
This distance measure shows very strange behaviour. The expression
transpose(h1-h2) * A * (h1-h2) yields egative values that can not be processed by the
square root. Some examples::
h1 h2 transpose(h1-h2) * A * (h1-h2)
[1, 0] to [0.0, 1.0] : -2.0
[1, 0] to [0.5, 0.5] : 0.0
[1, 0] to [0.6666666666666667, 0.3333333333333333] : 0.111111111111
[1, 0] to [0.75, 0.25] : 0.0833333333333
[1, 0] to [0.8, 0.2] : 0.06
[1, 0] to [0.8333333333333334, 0.16666666666666666] : 0.0444444444444
[1, 0] to [0.8571428571428572, 0.14285714285714285] : 0.0340136054422
[1, 0] to [0.875, 0.125] : 0.0267857142857
[1, 0] to [0.8888888888888888, 0.1111111111111111] : 0.0216049382716
[1, 0] to [0.9, 0.1] : 0.0177777777778
[1, 0] to [1, 0]: 0.0
It is clearly undesireable to recieve negative values and even worse to get a value
of zero for other cases than the same histograms.
"""
h1, h2 = __prepare_histogram(h1, h2)
A = __quadratic_forms_matrix_euclidean(h1, h2)
return math.sqrt((h1-h2).dot(A.dot(h1-h2))) # transpose(h1-h2) * A * (h1-h2)
示例14: adaptive_trapezint
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sqrt [as 別名]
def adaptive_trapezint(f, a, b, eps=1E-4):
ddf = []
for i in range(101):
ddf.append(abs(diff2(f, a + i * (b - a) / 100)))
max_ddf = max(ddf)
h = sqrt(12 * eps) * 1 / sqrt((b - a) * max_ddf)
n = (b - a) / h
s = (f(a) + f(b)) / 2
for i in range(1, int(n)):
s += f(a + i * h)
s *= h
return s
示例15: _Efficiency
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sqrt [as 別名]
def _Efficiency(self):
Gas = self.kwargs["entradaGas"]
Liquido = self.kwargs["entradaLiquido"]
rhoS = Gas.solido.rho
muG = Gas.Gas.mu
rhoL = Liquido.Liquido.rho
rendimiento_fraccional = []
if self.kwargs["modelo_rendimiento"] == 0:
# Modelo de Johnstone (1954)
l = sqrt(pi/8)*Gas.Gas.mu/0.4987445/sqrt(Gas.Gas.rho*Gas.P)
for dp in Gas.solido.diametros:
Kn = l/dp*2
C = Cunningham(l, Kn)
kp = C*rhoS*dp**2*self.Vg/9/Gas.Gas.mu/self.dd
penetration = exp(-self.k*self.R*kp**0.5)
rendimiento_fraccional.append(1-penetration)
elif self.kwargs["modelo_rendimiento"] == 1:
# Modelo de Calvert (1972)
l = sqrt(pi/8)*muG/0.4987445/sqrt(Gas.Gas.rho*Gas.P)
for dp in Gas.solido.diametros:
Kn = l/dp*2
C = Cunningham(l, Kn)
kp = C*rhoS*dp**2*self.Vg/9/muG/self.dd
b = (-0.7-kp*self.f+1.4*log((kp*self.f+0.7)/0.7)+0.49 /
(0.7+kp*self.f))
penetration = exp(self.R*self.Vg*rhoL*self.dd/55/muG*b/kp)
if penetration > 1:
penetration = 1
elif penetration < 0:
penetration = 0
rendimiento_fraccional.append(1-penetration)
return rendimiento_fraccional