本文整理匯總了Python中scipy.special.xlogy方法的典型用法代碼示例。如果您正苦於以下問題:Python special.xlogy方法的具體用法?Python special.xlogy怎麽用?Python special.xlogy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.special
的用法示例。
在下文中一共展示了special.xlogy方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: log_loss
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import xlogy [as 別名]
def log_loss(y_true, y_prob):
"""Compute Logistic loss for classification.
Parameters
----------
y_true : array-like or label indicator matrix
Ground truth (correct) labels.
y_prob : array-like of float, shape = (n_samples, n_classes)
Predicted probabilities, as returned by a classifier's
predict_proba method.
Returns
-------
loss : float
The degree to which the samples are correctly predicted.
"""
if y_prob.shape[1] == 1:
y_prob = np.append(1 - y_prob, y_prob, axis=1)
if y_true.shape[1] == 1:
y_true = np.append(1 - y_true, y_true, axis=1)
return - xlogy(y_true, y_prob).sum() / y_prob.shape[0]
示例2: binary_log_loss
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import xlogy [as 別名]
def binary_log_loss(y_true, y_prob):
"""Compute binary logistic loss for classification.
This is identical to log_loss in binary classification case,
but is kept for its use in multilabel case.
Parameters
----------
y_true : array-like or label indicator matrix
Ground truth (correct) labels.
y_prob : array-like of float, shape = (n_samples, n_classes)
Predicted probabilities, as returned by a classifier's
predict_proba method.
Returns
-------
loss : float
The degree to which the samples are correctly predicted.
"""
return -(xlogy(y_true, y_prob) +
xlogy(1 - y_true, 1 - y_prob)).sum() / y_prob.shape[0]
示例3: _logpdf
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import xlogy [as 別名]
def _logpdf(self, x, alpha):
"""
Parameters
----------
x : ndarray
Points at which to evaluate the log of the probability
density function
%(_dirichlet_doc_default_callparams)s
Notes
-----
As this function does no argument checking, it should not be
called directly; use 'logpdf' instead.
"""
lnB = _lnB(alpha)
return - lnB + np.sum((xlogy(alpha - 1, x.T)).T, 0)
示例4: test_kl_div
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import xlogy [as 別名]
def test_kl_div():
def xfunc(x, y):
if x < 0 or y < 0 or (y == 0 and x != 0):
# extension of natural domain to preserve convexity
return np.inf
elif np.isposinf(x) or np.isposinf(y):
# limits within the natural domain
return np.inf
elif x == 0:
return y
else:
return special.xlogy(x, x/y) - x + y
values = (0, 0.5, 1.0)
signs = [-1, 1]
arr = []
for sgna, va, sgnb, vb in itertools.product(signs, values, signs, values):
arr.append((sgna*va, sgnb*vb))
z = np.array(arr, dtype=float)
w = np.vectorize(xfunc, otypes=[np.float64])(z[:,0], z[:,1])
assert_func_equal(special.kl_div, w, z, rtol=1e-13, atol=1e-13)
示例5: test_rel_entr
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import xlogy [as 別名]
def test_rel_entr():
def xfunc(x, y):
if x > 0 and y > 0:
return special.xlogy(x, x/y)
elif x == 0 and y >= 0:
return 0
else:
return np.inf
values = (0, 0.5, 1.0)
signs = [-1, 1]
arr = []
for sgna, va, sgnb, vb in itertools.product(signs, values, signs, values):
arr.append((sgna*va, sgnb*vb))
z = np.array(arr, dtype=float)
w = np.vectorize(xfunc, otypes=[np.float64])(z[:,0], z[:,1])
assert_func_equal(special.rel_entr, w, z, rtol=1e-13, atol=1e-13)
示例6: compute_score
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import xlogy [as 別名]
def compute_score(self, predictions):
"""
Compute the score according to the heuristic.
Args:
predictions (ndarray): Array of predictions
Returns:
Array of scores.
"""
assert predictions.ndim >= 3
# [n_sample, n_class, ..., n_iterations]
expected_entropy = - np.mean(np.sum(xlogy(predictions, predictions), axis=1),
axis=-1) # [batch size, ...]
expected_p = np.mean(predictions, axis=-1) # [batch_size, n_classes, ...]
entropy_expected_p = - np.sum(xlogy(expected_p, expected_p),
axis=1) # [batch size, ...]
bald_acq = entropy_expected_p - expected_entropy
return bald_acq
示例7: _h_thin_plate
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import xlogy [as 別名]
def _h_thin_plate(self, r):
return xlogy(r**2, r)
# Setup self._function and do smoke test on initial r
示例8: _logpdf
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import xlogy [as 別名]
def _logpdf(self, x, a, b):
lPx = sc.xlog1py(b - 1.0, -x) + sc.xlogy(a - 1.0, x)
lPx -= sc.betaln(a, b)
return lPx
示例9: _logpmf
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import xlogy [as 別名]
def _logpmf(self, x, n, p):
return gammaln(n+1) + np.sum(xlogy(x, p) - gammaln(x+1), axis=-1)
示例10: _logpmf
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import xlogy [as 別名]
def _logpmf(self, x, n, p):
k = floor(x)
combiln = (gamln(n+1) - (gamln(k+1) + gamln(n-k+1)))
return combiln + special.xlogy(k, p) + special.xlog1py(n-k, -p)
示例11: test_chi2_contingency_g
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import xlogy [as 別名]
def test_chi2_contingency_g():
c = np.array([[15, 60], [15, 90]])
g, p, dof, e = chi2_contingency(c, lambda_='log-likelihood', correction=False)
assert_allclose(g, 2*xlogy(c, c/e).sum())
g, p, dof, e = chi2_contingency(c, lambda_='log-likelihood', correction=True)
c_corr = c + np.array([[-0.5, 0.5], [0.5, -0.5]])
assert_allclose(g, 2*xlogy(c_corr, c_corr/e).sum())
c = np.array([[10, 12, 10], [12, 10, 10]])
g, p, dof, e = chi2_contingency(c, lambda_='log-likelihood')
assert_allclose(g, 2*xlogy(c, c/e).sum())
示例12: test_entropy
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import xlogy [as 別名]
def test_entropy(self):
# Basic entropy tests.
b = stats.binom(2, 0.5)
expected_p = np.array([0.25, 0.5, 0.25])
expected_h = -sum(xlogy(expected_p, expected_p))
h = b.entropy()
assert_allclose(h, expected_h)
b = stats.binom(2, 0.0)
h = b.entropy()
assert_equal(h, 0.0)
b = stats.binom(2, 1.0)
h = b.entropy()
assert_equal(h, 0.0)
示例13: test_xlogy
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import xlogy [as 別名]
def test_xlogy():
def xfunc(x, y):
if x == 0 and not np.isnan(y):
return x
else:
return x*np.log(y)
z1 = np.asarray([(0,0), (0, np.nan), (0, np.inf), (1.0, 2.0)], dtype=float)
z2 = np.r_[z1, [(0, 1j), (1, 1j)]]
w1 = np.vectorize(xfunc)(z1[:,0], z1[:,1])
assert_func_equal(special.xlogy, w1, z1, rtol=1e-13, atol=1e-13)
w2 = np.vectorize(xfunc)(z2[:,0], z2[:,1])
assert_func_equal(special.xlogy, w2, z2, rtol=1e-13, atol=1e-13)