本文整理匯總了Python中scipy.special.sph_harm方法的典型用法代碼示例。如果您正苦於以下問題:Python special.sph_harm方法的具體用法?Python special.sph_harm怎麽用?Python special.sph_harm使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.special
的用法示例。
在下文中一共展示了special.sph_harm方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: sph_harm
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import sph_harm [as 別名]
def sph_harm(m, n, az, el):
"""Compute spherical harmonics
Parameters
----------
m : (int)
Order of the spherical harmonic. abs(m) <= n
n : (int)
Degree of the harmonic, sometimes called l. n >= 0
az: (float)
Azimuthal (longitudinal) coordinate [0, 2pi], also called Theta.
el : (float)
Elevation (colatitudinal) coordinate [0, pi], also called Phi.
Returns
-------
y_mn : (complex float)
Complex spherical harmonic of order m and degree n,
sampled at theta = az, phi = el
"""
return scy.sph_harm(m, n, az, el)
示例2: sph_harm_all
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import sph_harm [as 別名]
def sph_harm_all(nMax, az, el):
"""Compute all spherical harmonic coefficients up to degree nMax.
Parameters
----------
nMax : (int)
Maximum degree of coefficients to be returned. n >= 0
az: (float), array_like
Azimuthal (longitudinal) coordinate [0, 2pi], also called Theta.
el : (float), array_like
Elevation (colatitudinal) coordinate [0, pi], also called Phi.
Returns
-------
y_mn : (complex float), array_like
Complex spherical harmonics of degrees n [0 ... nMax] and all corresponding
orders m [-n ... n], sampled at [az, el]. dim1 corresponds to az/el pairs,
dim2 to oder/degree (m, n) pairs like 0/0, -1/1, 0/1, 1/1, -2/2, -1/2 ...
"""
m, n = mnArrays(nMax)
mA, azA = _np.meshgrid(m, az)
nA, elA = _np.meshgrid(n, el)
return sph_harm(mA, nA, azA, elA)
示例3: process_coords_for_computations
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import sph_harm [as 別名]
def process_coords_for_computations(self, coords_for_computations, s, t):
"""
"""
if self._teffext:
return coords_for_computations
x, y, z, r = coords_for_computations[:,0], coords_for_computations[:,1], coords_for_computations[:,2], np.sqrt((coords_for_computations**2).sum(axis=1))
theta = np.arccos(z/r)
phi = np.arctan2(y, x)
xi_r = self._radamp * Y(self._m, self._l, theta, phi) * np.exp(-1j*2*np.pi*self._freq*t)
xi_t = self._tanamp * self.dYdtheta(self._m, self._l, theta, phi) * np.exp(-1j*2*np.pi*self._freq*t)
xi_p = self._tanamp/np.sin(theta) * self.dYdphi(self._m, self._l, theta, phi) * np.exp(-1j*2*np.pi*self._freq*t)
new_coords = np.zeros(coords_for_computations.shape)
new_coords[:,0] = coords_for_computations[:,0] + xi_r * np.sin(theta) * np.cos(phi)
new_coords[:,1] = coords_for_computations[:,1] + xi_r * np.sin(theta) * np.sin(phi)
new_coords[:,2] = coords_for_computations[:,2] + xi_r * np.cos(theta)
return new_coords
示例4: test_sph_harm
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import sph_harm [as 別名]
def test_sph_harm():
# Tests derived from tables in
# http://en.wikipedia.org/wiki/Table_of_spherical_harmonics
sh = special.sph_harm
pi = np.pi
exp = np.exp
sqrt = np.sqrt
sin = np.sin
cos = np.cos
yield (assert_array_almost_equal, sh(0,0,0,0),
0.5/sqrt(pi))
yield (assert_array_almost_equal, sh(-2,2,0.,pi/4),
0.25*sqrt(15./(2.*pi)) *
(sin(pi/4))**2.)
yield (assert_array_almost_equal, sh(-2,2,0.,pi/2),
0.25*sqrt(15./(2.*pi)))
yield (assert_array_almost_equal, sh(2,2,pi,pi/2),
0.25*sqrt(15/(2.*pi)) *
exp(0+2.*pi*1j)*sin(pi/2.)**2.)
yield (assert_array_almost_equal, sh(2,4,pi/4.,pi/3.),
(3./8.)*sqrt(5./(2.*pi)) *
exp(0+2.*pi/4.*1j) *
sin(pi/3.)**2. *
(7.*cos(pi/3.)**2.-1))
yield (assert_array_almost_equal, sh(4,4,pi/8.,pi/6.),
(3./16.)*sqrt(35./(2.*pi)) *
exp(0+4.*pi/8.*1j)*sin(pi/6.)**4.)
示例5: test_spherharm
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import sph_harm [as 別名]
def test_spherharm(self):
def spherharm(l, m, theta, phi):
if m > l:
return np.nan
return sc.sph_harm(m, l, phi, theta)
assert_mpmath_equal(spherharm,
mpmath.spherharm,
[IntArg(0, 100), IntArg(0, 100),
Arg(a=0, b=pi), Arg(a=0, b=2*pi)],
atol=1e-8, n=6000,
dps=150)
示例6: test_sph_harm
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import sph_harm [as 別名]
def test_sph_harm():
# Tests derived from tables in
# http://en.wikipedia.org/wiki/Table_of_spherical_harmonics
sh = special.sph_harm
pi = np.pi
exp = np.exp
sqrt = np.sqrt
sin = np.sin
cos = np.cos
assert_array_almost_equal(sh(0,0,0,0),
0.5/sqrt(pi))
assert_array_almost_equal(sh(-2,2,0.,pi/4),
0.25*sqrt(15./(2.*pi)) *
(sin(pi/4))**2.)
assert_array_almost_equal(sh(-2,2,0.,pi/2),
0.25*sqrt(15./(2.*pi)))
assert_array_almost_equal(sh(2,2,pi,pi/2),
0.25*sqrt(15/(2.*pi)) *
exp(0+2.*pi*1j)*sin(pi/2.)**2.)
assert_array_almost_equal(sh(2,4,pi/4.,pi/3.),
(3./8.)*sqrt(5./(2.*pi)) *
exp(0+2.*pi/4.*1j) *
sin(pi/3.)**2. *
(7.*cos(pi/3.)**2.-1))
assert_array_almost_equal(sh(4,4,pi/8.,pi/6.),
(3./16.)*sqrt(35./(2.*pi)) *
exp(0+4.*pi/8.*1j)*sin(pi/6.)**4.)
示例7: test_sph_harm_ufunc_loop_selection
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import sph_harm [as 別名]
def test_sph_harm_ufunc_loop_selection():
# see https://github.com/scipy/scipy/issues/4895
dt = np.dtype(np.complex128)
assert_equal(special.sph_harm(0, 0, 0, 0).dtype, dt)
assert_equal(special.sph_harm([0], 0, 0, 0).dtype, dt)
assert_equal(special.sph_harm(0, [0], 0, 0).dtype, dt)
assert_equal(special.sph_harm(0, 0, [0], 0).dtype, dt)
assert_equal(special.sph_harm(0, 0, 0, [0]).dtype, dt)
assert_equal(special.sph_harm([0], [0], [0], [0]).dtype, dt)
示例8: test_first_harmonics
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import sph_harm [as 別名]
def test_first_harmonics():
# Test against explicit representations of the first four
# spherical harmonics which use `theta` as the azimuthal angle,
# `phi` as the polar angle, and include the Condon-Shortley
# phase.
# Notation is Ymn
def Y00(theta, phi):
return 0.5*np.sqrt(1/np.pi)
def Yn11(theta, phi):
return 0.5*np.sqrt(3/(2*np.pi))*np.exp(-1j*theta)*np.sin(phi)
def Y01(theta, phi):
return 0.5*np.sqrt(3/np.pi)*np.cos(phi)
def Y11(theta, phi):
return -0.5*np.sqrt(3/(2*np.pi))*np.exp(1j*theta)*np.sin(phi)
harms = [Y00, Yn11, Y01, Y11]
m = [0, -1, 0, 1]
n = [0, 1, 1, 1]
theta = np.linspace(0, 2*np.pi)
phi = np.linspace(0, np.pi)
theta, phi = np.meshgrid(theta, phi)
for harm, m, n in zip(harms, m, n):
assert_allclose(sc.sph_harm(m, n, theta, phi),
harm(theta, phi),
rtol=1e-15, atol=1e-15,
err_msg="Y^{}_{} incorrect".format(m, n))
示例9: _naive_csh_seismology
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import sph_harm [as 別名]
def _naive_csh_seismology(l, m, theta, phi):
"""
Compute the spherical harmonics according to the seismology convention, in a naive way.
This appears to be equal to the sph_harm function in scipy.special.
"""
return (lpmv(m, l, np.cos(theta)) * np.exp(1j * m * phi) *
np.sqrt(((2 * l + 1) * factorial(l - m))
/
(4 * np.pi * factorial(l + m))))
示例10: __call__
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import sph_harm [as 別名]
def __call__(self, coords):
from scipy.special import sph_harm
theta, phi = cart_to_polar_angles(coords)
if self.m == 0:
return (sph_harm(self.m, self.l, phi, theta)).real
vplus = sph_harm(abs(self.m), self.l, phi, theta)
vminus = sph_harm(-abs(self.m), self.l, phi, theta)
value = np.sqrt(1/2.0) * (self._posneg*vplus + vminus)
if self.m < 0:
return -value.imag
else:
return value.real
示例11: real_sph_harm
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import sph_harm [as 別名]
def real_sph_harm(mm, ll, phi, theta):
"""
The real-valued spherical harmonics.
"""
if mm > 0:
ans = (1.0 / np.sqrt(2)) * (ss.sph_harm(mm, ll, phi, theta) + ((-1) ** mm) * ss.sph_harm(-mm, ll, phi, theta))
elif mm == 0:
ans = ss.sph_harm(0, ll, phi, theta)
elif mm < 0:
ans = (1.0 / (np.sqrt(2) * complex(0.0, 1))) * (
ss.sph_harm(-mm, ll, phi, theta) - ((-1) ** mm) * ss.sph_harm(mm, ll, phi, theta)
)
return ans.real
示例12: sph_harm_lm
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import sph_harm [as 別名]
def sph_harm_lm(l, m, n):
""" Wrapper around scipy.special.sph_harm. Return spherical harmonic of degree l and order m. """
phi, theta = util.sph_sample(n)
phi, theta = np.meshgrid(phi, theta)
f = sph_harm(m, l, theta, phi)
return f
示例13: dYdtheta
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import sph_harm [as 別名]
def dYdtheta(self, m, l, theta, phi):
if abs(m) > l:
return 0
# TODO: just a quick hack
if abs(m+1) > l:
last_term = 0.0
else:
last_term = Y(m+1, l, theta, phi)
return m/np.tan(theta)*Y(m, l, theta, phi) + np.sqrt((l-m)*(l+m+1))*np.exp(-1j*phi)*last_term
示例14: dYdphi
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import sph_harm [as 別名]
def dYdphi(self, m, l, theta, phi):
return 1j*m*Y(m, l, theta, phi)
示例15: process_coords_for_observations
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import sph_harm [as 別名]
def process_coords_for_observations(self, coords_for_computations, coords_for_observations, s, t):
"""
Displacement equations:
xi_r(r, theta, phi) = a(r) Y_lm (theta, phi) exp(-i*2*pi*f*t)
xi_theta(r, theta, phi) = b(r) dY_lm/dtheta (theta, phi) exp(-i*2*pi*f*t)
xi_phi(r, theta, phi) = b(r)/sin(theta) dY_lm/dphi (theta, phi) exp(-i*2*pi*f*t)
where:
b(r) = a(r) GM/(R^3*f^2)
"""
# TODO: we do want to displace the coords_for_observations, but the x,y,z,r below are from the ALSO displaced coords_for_computations
# if not self._teffext:
# return coords_for_observations
x, y, z, r = coords_for_computations[:,0], coords_for_computations[:,1], coords_for_computations[:,2], np.sqrt((coords_for_computations**2).sum(axis=1))
theta = np.arccos(z/r)
phi = np.arctan2(y, x)
xi_r = self._radamp * Y(self._m, self._l, theta, phi) * np.exp(-1j*2*np.pi*self._freq*t)
xi_t = self._tanamp * self.dYdtheta(self._m, self._l, theta, phi) * np.exp(-1j*2*np.pi*self._freq*t)
xi_p = self._tanamp/np.sin(theta) * self.dYdphi(self._m, self._l, theta, phi) * np.exp(-1j*2*np.pi*self._freq*t)
new_coords = np.zeros(coords_for_observations.shape)
new_coords[:,0] = coords_for_observations[:,0] + xi_r * np.sin(theta) * np.cos(phi)
new_coords[:,1] = coords_for_observations[:,1] + xi_r * np.sin(theta) * np.sin(phi)
new_coords[:,2] = coords_for_observations[:,2] + xi_r * np.cos(theta)
return new_coords