當前位置: 首頁>>代碼示例>>Python>>正文


Python special.softmax方法代碼示例

本文整理匯總了Python中scipy.special.softmax方法的典型用法代碼示例。如果您正苦於以下問題:Python special.softmax方法的具體用法?Python special.softmax怎麽用?Python special.softmax使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.special的用法示例。


在下文中一共展示了special.softmax方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: to_prob

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import softmax [as 別名]
def to_prob(probabilities: np.ndarray):
    """
    If the probabilities array is not a distrubution will softmax it.

    Args:
        probabilities (array): [batch_size, num_classes, ...]

    Returns:
        Same as probabilities.
    """
    not_bounded = np.min(probabilities) < 0 or np.max(probabilities) > 1.0
    multiclass = probabilities.shape[1] > 1
    sum_to_one = np.allclose(probabilities.sum(1), 1)
    if not_bounded or (multiclass and not sum_to_one):
        if multiclass:
            probabilities = softmax(probabilities, 1)
        else:
            probabilities = expit(probabilities)
    return probabilities 
開發者ID:ElementAI,項目名稱:baal,代碼行數:21,代碼來源:array_utils.py

示例2: match

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import softmax [as 別名]
def match(self, contexts):
        assert len(contexts) == len(self.context_noise)
        n = len(self._taxonomy)
        context_logprobs = np.zeros(n)
        axes_context_logprobs = _to_typed_list([
            np.zeros(len(self._taxonomy_tasks)),
            np.zeros(len(self._taxonomy_datasets)),
            np.zeros(len(self._taxonomy_metrics)),
        ])

        for context, noise, ms_noise, ts_noise in zip(contexts, self.context_noise, self.metrics_noise, self.task_noise):
            self.compute_context_logprobs(context, noise, ms_noise, ts_noise, context_logprobs, axes_context_logprobs)
        keys = self.taxonomy.taxonomy
        logprobs = context_logprobs
        #keys, logprobs = zip(*context_logprobs.items())
        probs = softmax(np.array(logprobs))
        axes_probs = [softmax(np.array(a)) for a in axes_context_logprobs]
        return (
            zip(keys, probs),
            zip(self._taxonomy_tasks, axes_probs[0]),
            zip(self._taxonomy_datasets, axes_probs[1]),
            zip(self._taxonomy_metrics, axes_probs[2])
        ) 
開發者ID:paperswithcode,項目名稱:axcell,代碼行數:25,代碼來源:context_search.py

示例3: predict

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import softmax [as 別名]
def predict(self, probas):
        resulting_preds = np.zeros((np.max([len(x) for x in probas]), self.n_class))
        for i, c in enumerate(self.mapped_classes):
            for indx, r in enumerate(c):
                resulting_preds[:, i] += probas[indx][:, r]
        resulting_preds = resulting_preds / self.R
        # return resulting_preds/resulting_preds.sum(axis = 1).reshape(-1,1)
        return softmax(resulting_preds, axis=1) 
開發者ID:h2oai,項目名稱:driverlessai-recipes,代碼行數:10,代碼來源:extremeClassifier.py

示例4: test_to_prob

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import softmax [as 別名]
def test_to_prob(an_array, a_binary_array):
    out = to_prob(an_array)
    assert not np.allclose(out, an_array)

    out = to_prob(a_binary_array)
    assert not np.allclose(out, a_binary_array)

    a_array_scaled = softmax(an_array, 1)
    a_binary_array_scaled = expit(a_binary_array)

    out = to_prob(a_array_scaled)
    assert np.allclose(out, a_array_scaled)

    out = to_prob(a_binary_array_scaled)
    assert np.allclose(out, a_binary_array_scaled) 
開發者ID:ElementAI,項目名稱:baal,代碼行數:17,代碼來源:test_array_utils.py

示例5: existence_accuracy

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import softmax [as 別名]
def existence_accuracy(target, output, use_nodes=True, use_edges=True):
    if not use_nodes and not use_edges:
        raise ValueError("Nodes or edges (or both) must be used")
    tdds = utils_np.graphs_tuple_to_data_dicts(target)
    odds = utils_np.graphs_tuple_to_data_dicts(output)
    cs = []
    ss = []
    for td, od in zip(tdds, odds):

        nodes_to_predict = td["nodes"][:, 0] == 0
        xn = np.argmax(td["nodes"][:, 1:], axis=-1)
        xn = xn[nodes_to_predict]
        yn = np.argmax(softmax(od["nodes"][:, 1:], axis=1), axis=-1)
        yn = yn[nodes_to_predict]

        edges_to_predict = td["edges"][:, 0] == 0
        xe = np.argmax(td["edges"][:, 1:], axis=-1)
        xe = xe[edges_to_predict]
        ye = np.argmax(softmax(od["edges"][:, 1:], axis=1), axis=-1)
        ye = ye[edges_to_predict]

        c = []
        if use_nodes:
            c.append(xn == yn)
        if use_edges:
            c.append(xe == ye)
        c = np.concatenate(c, axis=0)
        s = np.all(c)
        cs.append(c)
        ss.append(s)
    correct = np.mean(np.concatenate(cs, axis=0))
    solved = np.mean(np.stack(ss))
    return correct, solved 
開發者ID:graknlabs,項目名稱:kglib,代碼行數:35,代碼來源:metrics.py

示例6: get_xhat_y_hat

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import softmax [as 別名]
def get_xhat_y_hat(prototypes, w, x):
    M = softmax(-cdist(x, prototypes), axis=1)
    x_hat = np.matmul(M, prototypes)
    y_hat = np.clip(
        np.matmul(M, w.reshape((-1, 1))),
        np.finfo(float).eps,
        1.0 - np.finfo(float).eps
    )
    return M, x_hat, y_hat 
開發者ID:IBM,項目名稱:AIF360,代碼行數:11,代碼來源:helpers.py

示例7: inference

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import softmax [as 別名]
def inference(args, model, tokenizer, prefix=""):    
    inf_task = args.task_name
    inf_dataset = load_example(args, inf_task, tokenizer)
    inf_sampler = SequentialSampler(inf_dataset)
    inf_dataloader = DataLoader(inf_dataset, sampler=inf_sampler, batch_size=1)

    # Inference!
    logger.info("***** Running inference {} *****".format(prefix))
    
    preds = None
    out_label_ids = None
    for batch in tqdm(inf_dataloader, desc="Inferencing"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)    

        with torch.no_grad():
            inputs = {'input_ids':      batch[0],
                      'attention_mask': batch[1],
                      'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None,  # XLM don't use segment_ids
                      'labels':         batch[3]}
            outputs = model(**inputs)
            inf_loss, logits = outputs[:2]
    
        pred_arr = logits.detach().cpu().numpy()
        out_label_ids = inputs['labels'].detach().cpu().numpy()

    logger.info("pred_arr: %s", pred_arr)
    pred_prob = np.squeeze(softmax(pred_arr, axis=1))
    logger.info("[0]: %s, [1]: %s", pred_prob[0], pred_prob[1])

    if args.output_mode == "classification":
        pred = np.argmax(pred_arr, axis=1)
    elif args.output_mode == "regression":
        pred = np.squeeze(pred_arr)
    
    if pred == 0:
        logger.info("Text is negative with confidence: %d ", pred_prob[0]*100)
    else:
        logger.info("Text is positive with confidence: %d ", pred_prob[1]*100) 
開發者ID:nikhilno1,項目名稱:nlp_projects,代碼行數:41,代碼來源:run_inference.py

示例8: _generate_y

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import softmax [as 別名]
def _generate_y(self, x, cluster_mean):
        model_info = np.random.normal(loc=cluster_mean, scale=0.1, size=cluster_mean.shape)
        w = np.matmul(self.Q, model_info)
        
        num_samples = x.shape[0]
        prob = softmax(np.matmul(x, w) + np.random.normal(loc=0., scale=0.1, size=(num_samples, self.num_classes)), axis=1)
                
        y = np.argmax(prob, axis=1)
        return y, w, model_info 
開發者ID:TalwalkarLab,項目名稱:leaf,代碼行數:11,代碼來源:data_generator.py

示例9: metric_multi_accuracy

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import softmax [as 別名]
def metric_multi_accuracy(logits, labels, options_num):
  logits = np.reshape(softmax(logits, -1)[:,1], (len(logits)//options_num, options_num))
  labels = np.argmax(np.reshape(labels, (len(labels)//options_num, options_num)),-1)
  return metric_accuracy(logits, labels) 
開發者ID:namisan,項目名稱:mt-dnn,代碼行數:6,代碼來源:metrics.py

示例10: test_binary_listnet_simple

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import softmax [as 別名]
def test_binary_listnet_simple():
    y_pred = [0.5, 0.2]
    y_true = [1.0, 0.0]

    result = binary_listNet_wrap(y_pred, y_true, eps=0.0)
    expected = - np.sum(y_true * np.log(softmax(y_pred)))

    assert not math.isnan(result) and not math.isinf(result)
    assert (result == approx(expected)) 
開發者ID:allegro,項目名稱:allRank,代碼行數:11,代碼來源:test_binary_listnet.py

示例11: test_binary_listnet_stable_for_very_small_prediction

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import softmax [as 別名]
def test_binary_listnet_stable_for_very_small_prediction():
    y_pred = [0.5, -1e30]
    y_true = [1.0, 0.0]

    result = binary_listNet_wrap(y_pred, y_true)
    expected = - np.sum(y_true * np.log(softmax(y_pred) + DEFAULT_EPS))

    assert not math.isnan(result) and not math.isinf(result)
    assert (result == approx(expected, abs=1e-9)) 
開發者ID:allegro,項目名稱:allRank,代碼行數:11,代碼來源:test_binary_listnet.py

示例12: test_binary_listnet_ignores_padded_value

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import softmax [as 別名]
def test_binary_listnet_ignores_padded_value():
    y_pred = [0.5, 0.2, 0.5]
    y_true = [1.0, 0.0, PADDED_Y_VALUE]

    result = binary_listNet_wrap(y_pred, y_true)
    expected = - np.sum(y_true[:2] * np.log(softmax(y_pred[:2]) + DEFAULT_EPS))

    assert not math.isnan(result) and not math.isinf(result)
    assert (result == approx(expected)) 
開發者ID:allegro,項目名稱:allRank,代碼行數:11,代碼來源:test_binary_listnet.py

示例13: test_listnet_simple

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import softmax [as 別名]
def test_listnet_simple():
    y_pred = [0.5, 0.2]
    y_true = [1.0, 0.0]

    result = listNet_wrap(y_pred, y_true, eps=0.0)
    expected = - np.sum(softmax(y_true) * np.log(softmax(y_pred)))

    assert not math.isnan(result) and not math.isinf(result)
    assert (result == approx(expected)) 
開發者ID:allegro,項目名稱:allRank,代碼行數:11,代碼來源:test_listnet.py

示例14: test_listnet_stable_for_very_small_prediction

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import softmax [as 別名]
def test_listnet_stable_for_very_small_prediction():
    y_pred = [0.5, -1e30]
    y_true = [1.0, 0.0]

    result = listNet_wrap(y_pred, y_true)
    expected = - np.sum(softmax(y_true) * np.log(softmax(y_pred) + DEFAULT_EPS))

    assert not math.isnan(result) and not math.isinf(result)
    assert (result == approx(expected)) 
開發者ID:allegro,項目名稱:allRank,代碼行數:11,代碼來源:test_listnet.py

示例15: _sample_characteristic

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import softmax [as 別名]
def _sample_characteristic(states_df, options, level_dict, use_keys):
    """Sample characteristic of individuals.

    The function is used to sample the values of one state space characteristic, say
    experience. The keys of ``level_dict`` are the possible starting values of
    experience. The values of the dictionary are :class:`pandas.Series` whose index are
    covariate names and the values are the parameter values.

    ``states_df`` is used to generate all possible covariates with the existing
    information.

    For each level, the dot product of parameters and covariates determines the value
    ``z``. The softmax function converts the level-specific ``z``-values to
    probabilities. The probabilities are used to sample the characteristic.

    Parameters
    ----------
    states_df : pandas.DataFrame
        Contains the state of each individual.
    options : dict
        Options of the model.
    level_dict : dict
        A dictionary where the keys are the values distributed according to the
        probability mass function. The values are a :class:`pandas.Series` with
        covariate names as the index and parameter values.
    use_keys : bool
        Identifier for whether the keys of the level dict should be used as variables
        values or use numeric codes instead. For example, assign numbers to choices.

    Returns
    -------
    characteristic : numpy.ndarray
        Array with shape (n_individuals,) containing sampled values.

    """
    # Generate covariates.
    all_data = compute_covariates(
        states_df, options["covariates_all"], check_nans=True, raise_errors=False
    )

    # Calculate dot product of covariates and parameters.
    z = ()
    for level in level_dict:
        labels = level_dict[level].index
        x_beta = np.dot(
            all_data[labels].to_numpy(dtype=COVARIATES_DOT_PRODUCT_DTYPE),
            level_dict[level],
        )

        z += (x_beta,)

    # Calculate probabilities with the softmax function.
    probabilities = softmax(np.column_stack(z), axis=1)

    np.random.seed(next(options["simulation_seed_iteration"]))

    choices = level_dict if use_keys else len(level_dict)
    characteristic = _random_choice(choices, probabilities)

    return characteristic 
開發者ID:OpenSourceEconomics,項目名稱:respy,代碼行數:62,代碼來源:simulate.py


注:本文中的scipy.special.softmax方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。