本文整理匯總了Python中scipy.special.lpmv方法的典型用法代碼示例。如果您正苦於以下問題:Python special.lpmv方法的具體用法?Python special.lpmv怎麽用?Python special.lpmv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.special
的用法示例。
在下文中一共展示了special.lpmv方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_erf_complex
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lpmv [as 別名]
def test_erf_complex():
# need to increase mpmath precision for this test
old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec
try:
mpmath.mp.dps = 70
x1, y1 = np.meshgrid(np.linspace(-10, 1, 31), np.linspace(-10, 1, 11))
x2, y2 = np.meshgrid(np.logspace(-80, .8, 31), np.logspace(-80, .8, 11))
points = np.r_[x1.ravel(),x2.ravel()] + 1j*np.r_[y1.ravel(),y2.ravel()]
assert_func_equal(sc.erf, lambda x: complex(mpmath.erf(x)), points,
vectorized=False, rtol=1e-13)
assert_func_equal(sc.erfc, lambda x: complex(mpmath.erfc(x)), points,
vectorized=False, rtol=1e-13)
finally:
mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec
#------------------------------------------------------------------------------
# lpmv
#------------------------------------------------------------------------------
示例2: test_legenp
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lpmv [as 別名]
def test_legenp(self):
def lpnm(n, m, z):
if m > n:
return 0.0
return sc.lpmn(m, n, z)[0][-1,-1]
def lpnm_2(n, m, z):
if m > n:
return 0.0
return sc.lpmv(m, n, z)
def legenp(n, m, z):
if abs(z) < 1e-15:
# mpmath has bad performance here
return np.nan
return _exception_to_nan(mpmath.legenp)(n, m, z, **HYPERKW)
assert_mpmath_equal(lpnm,
legenp,
[IntArg(0, 100), IntArg(0, 100), Arg()])
assert_mpmath_equal(lpnm_2,
legenp,
[IntArg(0, 100), IntArg(0, 100), Arg(-1, 1)])
示例3: test_erf_complex
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lpmv [as 別名]
def test_erf_complex():
# need to increase mpmath precision for this test
old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec
try:
mpmath.mp.dps = 70
x1, y1 = np.meshgrid(np.linspace(-10, 1, 31), np.linspace(-10, 1, 11))
x2, y2 = np.meshgrid(np.logspace(-80, .8, 31), np.logspace(-80, .8, 11))
points = np.r_[x1.ravel(),x2.ravel()] + 1j*np.r_[y1.ravel(), y2.ravel()]
assert_func_equal(sc.erf, lambda x: complex(mpmath.erf(x)), points,
vectorized=False, rtol=1e-13)
assert_func_equal(sc.erfc, lambda x: complex(mpmath.erfc(x)), points,
vectorized=False, rtol=1e-13)
finally:
mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec
# ------------------------------------------------------------------------------
# lpmv
# ------------------------------------------------------------------------------
示例4: spherical_harmonics
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lpmv [as 別名]
def spherical_harmonics(m, n, theta, phi):
"""
An implementation of spherical harmonics that overcomes conda compilation
issues. See: https://github.com/nipy/dipy/issues/852
"""
x = np.cos(phi)
val = lpmv(m, n, x).astype(complex)
val *= np.sqrt((2 * n + 1) / 4.0 / np.pi)
val *= np.exp(0.5 * (gammaln(n - m + 1) - gammaln(n + m + 1)))
val = val * np.exp(1j * m * theta)
return val
示例5: test_lpmv
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lpmv [as 別名]
def test_lpmv(self):
assert_equal(cephes.lpmv(0,0,1),1.0)
示例6: test_clpmn_close_to_real_2
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lpmv [as 別名]
def test_clpmn_close_to_real_2(self):
eps = 1e-10
m = 1
n = 3
x = 0.5
clp_plus = special.clpmn(m, n, x+1j*eps, 2)[0][m, n]
clp_minus = special.clpmn(m, n, x-1j*eps, 2)[0][m, n]
assert_array_almost_equal(array([clp_plus, clp_minus]),
array([special.lpmv(m, n, x),
special.lpmv(m, n, x)]),
7)
示例7: test_clpmn_close_to_real_3
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lpmv [as 別名]
def test_clpmn_close_to_real_3(self):
eps = 1e-10
m = 1
n = 3
x = 0.5
clp_plus = special.clpmn(m, n, x+1j*eps, 3)[0][m, n]
clp_minus = special.clpmn(m, n, x-1j*eps, 3)[0][m, n]
assert_array_almost_equal(array([clp_plus, clp_minus]),
array([special.lpmv(m, n, x)*np.exp(-0.5j*m*np.pi),
special.lpmv(m, n, x)*np.exp(0.5j*m*np.pi)]),
7)
示例8: _naive_csh_unnormalized
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lpmv [as 別名]
def _naive_csh_unnormalized(l, m, theta, phi):
"""
Compute unnormalized SH
"""
return lpmv(m, l, np.cos(theta)) * np.exp(1j * m * phi)
示例9: _naive_csh_quantum
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lpmv [as 別名]
def _naive_csh_quantum(l, m, theta, phi):
"""
Compute orthonormalized spherical harmonics in a naive way.
"""
return (((-1.) ** m) * lpmv(m, l, np.cos(theta)) * np.exp(1j * m * phi) *
np.sqrt(((2 * l + 1) * factorial(l - m))
/
(4 * np.pi * factorial(l + m))))
示例10: _naive_csh_seismology
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lpmv [as 別名]
def _naive_csh_seismology(l, m, theta, phi):
"""
Compute the spherical harmonics according to the seismology convention, in a naive way.
This appears to be equal to the sph_harm function in scipy.special.
"""
return (lpmv(m, l, np.cos(theta)) * np.exp(1j * m * phi) *
np.sqrt(((2 * l + 1) * factorial(l - m))
/
(4 * np.pi * factorial(l + m))))
示例11: _naive_csh_ph
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lpmv [as 別名]
def _naive_csh_ph(l, m, theta, phi):
"""
CSH as defined by Pinchon-Hoggan. Same as wikipedia's quantum-normalized SH = naive_Y_quantum()
"""
if l == 0 and m == 0:
return 1. / np.sqrt(4 * np.pi)
else:
phase = ((1j) ** (m + np.abs(m)))
normalizer = np.sqrt(((2 * l + 1.) * factorial(l - np.abs(m)))
/
(4 * np.pi * factorial(l + np.abs(m))))
P = lpmv(np.abs(m), l, np.cos(theta))
e = np.exp(1j * m * phi)
return phase * normalizer * P * e
示例12: _naive_rsh_ph
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lpmv [as 別名]
def _naive_rsh_ph(l, m, theta, phi):
if m == 0:
return np.sqrt((2 * l + 1.) / (4 * np.pi)) * lpmv(m, l, np.cos(theta))
elif m < 0:
return np.sqrt(((2 * l + 1.) * factorial(l + m)) /
(2 * np.pi * factorial(l - m))) * lpmv(-m, l, np.cos(theta)) * np.sin(-m * phi)
elif m > 0:
return np.sqrt(((2 * l + 1.) * factorial(l - m)) /
(2 * np.pi * factorial(l + m))) * lpmv(m, l, np.cos(theta)) * np.cos(m * phi)
示例13: _rspherical_harm
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lpmv [as 別名]
def _rspherical_harm(m, l, theta, cos_phi):
r""" Calculates the real spherical harmonics using :math:`Y_l^m(\theta, \varphi)` with :math:`\mathbf R\to \{r, \theta, \varphi\}`.
These real spherical harmonics are via these equations:
.. math::
Y^m_l(\theta,\varphi) &= -(-1)^m\sqrt{2\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}}
P^{m}_l (\cos(\varphi)) \sin(m \theta) & m < 0\\
Y^m_l(\theta,\varphi) &= \sqrt{\frac{2l+1}{4\pi}} P^{m}_l (\cos(\varphi)) & m = 0\\
Y^m_l(\theta,\varphi) &= \sqrt{2\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}}
P^{m}_l (\cos(\varphi)) \cos(m \theta) & m > 0
Parameters
----------
m : int
order of the spherical harmonics
l : int
degree of the spherical harmonics
theta : array_like
angle in :math:`x-y` plane (azimuthal)
cos_phi : array_like
cos(phi) to angle from :math:`z` axis (polar)
"""
# Calculate the associated Legendre polynomial
# Since the real spherical harmonics has slight differences
# for positive and negative m, we have to implement them individually.
# Currently this is a re-write of what Inelastica does and a combination of
# learned lessons from Denchar.
# As such the choice of these real spherical harmonics is that of Siesta.
if m == 0:
return _rspher_harm_fact[l][m] * lpmv(m, l, cos_phi)
elif m < 0:
return _rspher_harm_fact[l][m] * (lpmv(m, l, cos_phi) * sin(m*theta))
return _rspher_harm_fact[l][m] * (lpmv(m, l, cos_phi) * cos(m*theta))
示例14: gscontrol_raw
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lpmv [as 別名]
def gscontrol_raw(dtrank=4):
"""
This function uses the spatial global signal estimation approach to modify catd (global variable) to
removal global signal out of individual echo time series datasets. The spatial global signal is estimated
from the optimally combined data after detrending with a Legendre polynomial basis of order=0 and degree=dtrank.
"""
print "++ Applying amplitude-based T1 equilibration correction"
#Legendre polynomial basis for denoising
from scipy.special import lpmv
Lmix = np.array([lpmv(0,vv,np.linspace(-1,1,OCcatd.shape[-1])) for vv in range(dtrank)]).T
#Compute mean, std, mask local to this function - inefficient, but makes this function a bit more modular
Gmu = OCcatd.mean(-1)
Gstd = OCcatd.std(-1)
Gmask = Gmu!=0
#Find spatial global signal
dat = OCcatd[Gmask] - Gmu[Gmask][:,np.newaxis]
sol = np.linalg.lstsq(Lmix,dat.T) #Legendre basis for detrending
detr = dat - np.dot(sol[0].T,Lmix.T)[0]
sphis = (detr).min(1)
sphis -= sphis.mean()
niwrite(unmask(sphis,Gmask),aff,'T1gs.nii',head)
#Find time course of the spatial global signal, make basis with the Legendre basis
glsig = np.linalg.lstsq(np.atleast_2d(sphis).T,dat)[0]
glsig = (glsig-glsig.mean() ) / glsig.std()
np.savetxt('glsig.1D',glsig)
glbase = np.hstack([Lmix,glsig.T])
#Project global signal out of optimally combined data
sol = np.linalg.lstsq(np.atleast_2d(glbase),dat.T)
tsoc_nogs = dat - np.dot(np.atleast_2d(sol[0][dtrank]).T,np.atleast_2d(glbase.T[dtrank])) + Gmu[Gmask][:,np.newaxis]
global OCcatd, sphis_raw
sphis_raw = sphis
niwrite(OCcatd,aff,'tsoc_orig.nii',head)
OCcatd = unmask(tsoc_nogs,Gmask)
niwrite(OCcatd,aff,'tsoc_nogs.nii',head)
#Project glbase out of each echo
for ii in range(Ne):
dat = catd[:,:,:,ii,:][Gmask]
sol = np.linalg.lstsq(np.atleast_2d(glbase),dat.T)
e_nogs = dat - np.dot(np.atleast_2d(sol[0][dtrank]).T,np.atleast_2d(glbase.T[dtrank]))
catd[:,:,:,ii,:] = unmask(e_nogs,Gmask)
if 'DEBUG' in sys.argv:
ipdb.set_trace()
示例15: test_lpmv
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lpmv [as 別名]
def test_lpmv():
pts = []
for x in [-0.99, -0.557, 1e-6, 0.132, 1]:
pts.extend([
(1, 1, x),
(1, -1, x),
(-1, 1, x),
(-1, -2, x),
(1, 1.7, x),
(1, -1.7, x),
(-1, 1.7, x),
(-1, -2.7, x),
(1, 10, x),
(1, 11, x),
(3, 8, x),
(5, 11, x),
(-3, 8, x),
(-5, 11, x),
(3, -8, x),
(5, -11, x),
(-3, -8, x),
(-5, -11, x),
(3, 8.3, x),
(5, 11.3, x),
(-3, 8.3, x),
(-5, 11.3, x),
(3, -8.3, x),
(5, -11.3, x),
(-3, -8.3, x),
(-5, -11.3, x),
])
def mplegenp(nu, mu, x):
if mu == int(mu) and x == 1:
# mpmath 0.17 gets this wrong
if mu == 0:
return 1
else:
return 0
return mpmath.legenp(nu, mu, x)
dataset = [p + (mplegenp(p[1], p[0], p[2]),) for p in pts]
dataset = np.array(dataset, dtype=np.float_)
def evf(mu, nu, x):
return sc.lpmv(mu.astype(int), nu, x)
olderr = np.seterr(invalid='ignore')
try:
FuncData(evf, dataset, (0,1,2), 3, rtol=1e-10, atol=1e-14).check()
finally:
np.seterr(**olderr)
#------------------------------------------------------------------------------
# beta
#------------------------------------------------------------------------------