本文整理匯總了Python中scipy.special.logsumexp方法的典型用法代碼示例。如果您正苦於以下問題:Python special.logsumexp方法的具體用法?Python special.logsumexp怎麽用?Python special.logsumexp使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.special
的用法示例。
在下文中一共展示了special.logsumexp方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: predict_log_proba
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logsumexp [as 別名]
def predict_log_proba(self, X):
"""
Return log-probability estimates for the test vector X.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
C : array-like, shape = [n_samples, n_classes]
Returns the log-probability of the samples for each class in
the model. The columns correspond to the classes in sorted
order, as they appear in the attribute `classes_`.
"""
jll = self._joint_log_likelihood(X)
# normalize by P(x) = P(f_1, ..., f_n)
log_prob_x = logsumexp(jll, axis=1) # return shape = (2,)
return jll - np.atleast_2d(log_prob_x).T
示例2: test_logsumexp
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logsumexp [as 別名]
def test_logsumexp():
# check consistency with scipy's version
rng = np.random.RandomState(0)
for _ in range(100):
a = rng.uniform(0, 1000, size=1000)
assert_almost_equal(logsumexp(a), _logsumexp(a))
# Test whether logsumexp() function correctly handles large inputs.
# (from scipy tests)
b = np.array([1000, 1000])
desired = 1000.0 + np.log(2.0)
assert_almost_equal(_logsumexp(b), desired)
n = 1000
b = np.full(n, 10000, dtype='float64')
desired = 10000.0 + np.log(n)
assert_almost_equal(_logsumexp(b), desired)
示例3: __init__
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logsumexp [as 別名]
def __init__(self, n_hidden=2, max_iter=200, eps=1e-5, seed=None, verbose=False, count='binarize',
tree=True, **kwargs):
self.n_hidden = n_hidden # Number of hidden factors to use (Y_1,...Y_m) in paper
self.max_iter = max_iter # Maximum number of updates to run, regardless of convergence
self.eps = eps # Change to signal convergence
self.tree = tree
np.random.seed(seed) # Set seed for deterministic results
self.verbose = verbose
self.t = 20 # Initial softness of the soft-max function for alpha (see NIPS paper [1])
self.count = count # Which strategy, if necessary, for binarizing count data
if verbose > 0:
np.set_printoptions(precision=3, suppress=True, linewidth=200)
print('corex, rep size:', n_hidden)
if verbose:
np.seterr(all='warn')
# Can change to 'raise' if you are worried to see where the errors are
# Locally, I "ignore" underflow errors in logsumexp that appear innocuous (probabilities near 0)
else:
np.seterr(all='ignore')
示例4: ESS
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logsumexp [as 別名]
def ESS(works_prev, works_incremental):
"""
compute the effective sample size (ESS) as given in Eq 3.15 in https://arxiv.org/abs/1303.3123.
Parameters
----------
works_prev: np.array
np.array of floats representing the accumulated works at t-1 (unnormalized)
works_incremental: np.array
np.array of floats representing the incremental works at t (unnormalized)
Returns
-------
ESS: float
effective sample size
"""
prev_weights_normalized = np.exp(-works_prev - logsumexp(-works_prev))
#_logger.debug(f"\t\tnormalized weights: {prev_weights_normalized}")
incremental_weights_unnormalized = np.exp(-works_incremental)
#_logger.debug(f"\t\tincremental weights (unnormalized): {incremental_weights_unnormalized}")
ESS = np.dot(prev_weights_normalized, incremental_weights_unnormalized)**2 / np.dot(np.power(prev_weights_normalized, 2), np.power(incremental_weights_unnormalized, 2))
#_logger.debug(f"\t\tESS: {ESS}")
return ESS
示例5: CESS
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logsumexp [as 別名]
def CESS(works_prev, works_incremental):
"""
compute the conditional effective sample size (CESS) as given in Eq 3.16 in https://arxiv.org/abs/1303.3123.
Parameters
----------
works_prev: np.array
np.array of floats representing the accumulated works at t-1 (unnormalized)
works_incremental: np.array
np.array of floats representing the incremental works at t (unnormalized)
Returns
-------
CESS: float
conditional effective sample size
"""
prev_weights_normalization = np.exp(logsumexp(-works_prev))
prev_weights_normalized = np.exp(-works_prev) / prev_weights_normalization
#_logger.debug(f"\t\tnormalized weights: {prev_weights_normalized}")
incremental_weights_unnormalized = np.exp(-works_incremental)
#_logger.debug(f"\t\tincremental weights (unnormalized): {incremental_weights_unnormalized}")
N = len(prev_weights_normalized)
CESS = N * np.dot(prev_weights_normalized, incremental_weights_unnormalized)**2 / np.dot(prev_weights_normalized, np.power(incremental_weights_unnormalized, 2))
#_logger.debug(f"\t\tCESS: {CESS}")
return CESS
示例6: multinomial_resample
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logsumexp [as 別名]
def multinomial_resample(total_works, num_resamples):
"""
from a numpy array of total works and particle_labels, resample the particle indices N times with replacement
from a multinomial distribution conditioned on the weights w_i \propto e^{-cumulative_works_i}
Parameters
----------
total_works : np.array of floats
generalized accumulated works at time t for all particles
num_resamples : int, default len(sampler_states)
number of resamples to conduct; default doesn't change the number of particles
Returns
-------
resampled_works : np.array([1.0/num_resamples]*num_resamples)
resampled works (uniform)
resampled_indices : np.array of ints
resampled indices
"""
normalized_weights = np.exp(-total_works - logsumexp(-total_works))
resampled_indices = np.random.choice(len(normalized_weights), num_resamples, p=normalized_weights, replace = True)
resampled_works = np.array([np.average(total_works)] * num_resamples)
return resampled_works, resampled_indices
示例7: ESS
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logsumexp [as 別名]
def ESS(works_prev, works_incremental):
"""
compute the effective sample size (ESS) as given in Eq 3.15 in https://arxiv.org/abs/1303.3123.
Parameters
----------
works_prev: np.array
np.array of floats representing the accumulated works at t-1 (unnormalized)
works_incremental: np.array
np.array of floats representing the incremental works at t (unnormalized)
Returns
-------
normalized_ESS: float
effective sample size
"""
prev_weights_normalized = np.exp(-works_prev - logsumexp(-works_prev))
incremental_weights_unnormalized = np.exp(-works_incremental)
ESS = np.dot(prev_weights_normalized, incremental_weights_unnormalized)**2 / np.dot(np.power(prev_weights_normalized, 2), np.power(incremental_weights_unnormalized, 2))
normalized_ESS = ESS / len(prev_weights_normalized)
assert normalized_ESS >= 0.0 - DISTRIBUTED_ERROR_TOLERANCE and normalized_ESS <= 1.0 + DISTRIBUTED_ERROR_TOLERANCE, f"the normalized ESS ({normalized_ESS} is not between 0 and 1)"
return normalized_ESS
示例8: test_logsumexp_b
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logsumexp [as 別名]
def test_logsumexp_b():
a = np.arange(200)
b = np.arange(200, 0, -1)
desired = np.log(np.sum(b*np.exp(a)))
assert_almost_equal(logsumexp(a, b=b), desired)
a = [1000, 1000]
b = [1.2, 1.2]
desired = 1000 + np.log(2 * 1.2)
assert_almost_equal(logsumexp(a, b=b), desired)
x = np.array([1e-40] * 100000)
b = np.linspace(1, 1000, 100000)
logx = np.log(x)
X = np.vstack((x, x))
logX = np.vstack((logx, logx))
B = np.vstack((b, b))
assert_array_almost_equal(np.exp(logsumexp(logX, b=B)), (B * X).sum())
assert_array_almost_equal(np.exp(logsumexp(logX, b=B, axis=0)),
(B * X).sum(axis=0))
assert_array_almost_equal(np.exp(logsumexp(logX, b=B, axis=1)),
(B * X).sum(axis=1))
示例9: log_likelihood_network
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logsumexp [as 別名]
def log_likelihood_network(
digraph, traffic_in, traffic_out, params, weight=None):
"""
Compute the log-likelihood of model parameters.
If ``weight`` is not ``None``, the log-likelihood is correct only up to a
constant (independent of the parameters).
"""
loglik = 0
for i in range(len(traffic_in)):
loglik += traffic_in[i] * params[i]
if digraph.out_degree(i) > 0:
neighbors = list(digraph.successors(i))
if weight is None:
loglik -= traffic_out[i] * logsumexp(params.take(neighbors))
else:
weights = [digraph[i][j][weight] for j in neighbors]
loglik -= traffic_out[i] * logsumexp(
params.take(neighbors), b=weights)
return loglik
示例10: _log_density
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logsumexp [as 別名]
def _log_density(self, stimulus):
smap = self.parent_model.log_density(stimulus)
target_shape = (stimulus.shape[0],
stimulus.shape[1])
if smap.shape != target_shape:
if self.verbose:
print("Resizing saliency map", smap.shape, target_shape)
x_factor = target_shape[1] / smap.shape[1]
y_factor = target_shape[0] / smap.shape[0]
smap = zoom(smap, [y_factor, x_factor], order=1, mode='nearest')
smap -= logsumexp(smap)
assert smap.shape == target_shape
return smap
示例11: conditional_log_density
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logsumexp [as 別名]
def conditional_log_density(self, stimulus, x_hist, y_hist, t_hist, attributes=None, out=None):
smap = self.parent_model.conditional_log_density(stimulus, x_hist, y_hist, t_hist, attributes=attributes, out=out)
target_shape = (stimulus.shape[0],
stimulus.shape[1])
if smap.shape != target_shape:
if self.verbose:
print("Resizing saliency map", smap.shape, target_shape)
x_factor = target_shape[1] / smap.shape[1]
y_factor = target_shape[0] / smap.shape[0]
smap = zoom(smap, [y_factor, x_factor], order=1, mode='nearest')
smap -= logsumexp(smap)
assert smap.shape == target_shape
return smap
示例12: _log_density
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logsumexp [as 別名]
def _log_density(self, stimulus):
shape = stimulus.shape[0], stimulus.shape[1]
stimulus_id = get_image_hash(stimulus)
stimulus_index = self.stimuli.stimulus_ids.index(stimulus_id)
#fixations = self.fixations[self.fixations.n == stimulus_index]
inds = self.fixations.n != stimulus_index
ZZ = np.zeros(shape)
_fixations = np.array([self.ys[inds]*shape[0], self.xs[inds]*shape[1]]).T
fill_fixation_map(ZZ, _fixations)
ZZ = gaussian_filter(ZZ, [self.bandwidth*shape[0], self.bandwidth*shape[1]])
ZZ *= (1-self.eps)
ZZ += self.eps * 1.0/(shape[0]*shape[1])
ZZ = np.log(ZZ)
ZZ -= logsumexp(ZZ)
#ZZ -= np.log(np.exp(ZZ).sum())
return ZZ
示例13: _global_jump
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logsumexp [as 別名]
def _global_jump(self, replicas_log_P_k):
"""
Global jump scheme.
This method is described after Eq. 3 in [2]
"""
n_replica, n_states = self.n_replicas, self.n_states
for replica_index, current_state_index in enumerate(self._replica_thermodynamic_states):
neighborhood = self._neighborhood(current_state_index)
# Compute unnormalized log probabilities for all thermodynamic states.
log_P_k = np.zeros([n_states], np.float64)
for state_index in neighborhood:
u_k = self._energy_thermodynamic_states[replica_index, :]
log_P_k[state_index] = - u_k[state_index] + self.log_weights[state_index]
log_P_k -= logsumexp(log_P_k)
# Update sampler Context to current thermodynamic state.
P_k = np.exp(log_P_k[neighborhood])
new_state_index = np.random.choice(neighborhood, p=P_k)
self._replica_thermodynamic_states[replica_index] = new_state_index
# Accumulate statistics.
replicas_log_P_k[replica_index,:] = log_P_k[:]
self._n_proposed_matrix[current_state_index, neighborhood] += 1
self._n_accepted_matrix[current_state_index, new_state_index] += 1
示例14: test_logsumexp_b
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logsumexp [as 別名]
def test_logsumexp_b(ary_dtype, axis, b, keepdims):
"""Test ArviZ implementation of logsumexp.
Test also compares against Scipy implementation.
Case where b=None, they are equal. (N=len(ary))
Second case where b=x, and x is 1/(number of elements), they are almost equal.
Test tests against b parameter.
"""
ary = np.random.randn(100, 101).astype(ary_dtype) # pylint: disable=no-member
assert _logsumexp(ary=ary, axis=axis, b=b, keepdims=keepdims, copy=True) is not None
ary = ary.copy()
assert _logsumexp(ary=ary, axis=axis, b=b, keepdims=keepdims, copy=False) is not None
out = np.empty(5)
assert _logsumexp(ary=np.random.randn(10, 5), axis=0, out=out) is not None
# Scipy implementation
scipy_results = logsumexp(ary, b=b, axis=axis, keepdims=keepdims)
arviz_results = _logsumexp(ary, b=b, axis=axis, keepdims=keepdims)
assert_array_almost_equal(scipy_results, arviz_results)
示例15: _compute_log_type_probabilities
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logsumexp [as 別名]
def _compute_log_type_probabilities(df, optim_paras, options):
"""Compute the log type probabilities."""
x_betas = _compute_x_beta_for_type_probabilities(
df, optim_paras=optim_paras, options=options
)
log_probabilities = x_betas - special.logsumexp(x_betas, axis=1, keepdims=True)
log_probabilities = np.clip(log_probabilities, MIN_FLOAT, MAX_FLOAT)
return log_probabilities