當前位置: 首頁>>代碼示例>>Python>>正文


Python special.logit方法代碼示例

本文整理匯總了Python中scipy.special.logit方法的典型用法代碼示例。如果您正苦於以下問題:Python special.logit方法的具體用法?Python special.logit怎麽用?Python special.logit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.special的用法示例。


在下文中一共展示了special.logit方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_policy_fn

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logit [as 別名]
def get_policy_fn(request, ffn_model):
  """Returns a policy class based on the InferenceRequest proto."""

  if request.movement_policy_name:
    movement_policy_class = globals().get(request.movement_policy_name, None)
    if movement_policy_class is None:
      movement_policy_class = import_symbol(request.movement_policy_name)
  else:  # Default / fallback.
    movement_policy_class = FaceMaxMovementPolicy

  if request.movement_policy_args:
    kwargs = json.loads(request.movement_policy_args)
  else:
    kwargs = {}
  if 'deltas' not in kwargs:
    kwargs['deltas'] = ffn_model.deltas[::-1]
  if 'score_threshold' not in kwargs:
    kwargs['score_threshold'] = logit(request.inference_options.move_threshold)

  return lambda canvas: movement_policy_class(canvas, **kwargs) 
開發者ID:google,項目名稱:ffn,代碼行數:22,代碼來源:movement.py

示例2: fixed_offsets

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logit [as 別名]
def fixed_offsets(model, seed, fov_shifts=None):
  """Generates offsets based on a fixed list."""
  for off in itertools.chain([(0, 0, 0)], fov_shifts):
    if model.dim == 3:
      is_valid_move = seed[:,
                           seed.shape[1] // 2 + off[2],
                           seed.shape[2] // 2 + off[1],
                           seed.shape[3] // 2 + off[0],
                           0] >= logit(FLAGS.threshold)
    else:
      is_valid_move = seed[:,
                           seed.shape[1] // 2 + off[1],
                           seed.shape[2] // 2 + off[0],
                           0] >= logit(FLAGS.threshold)

    if not is_valid_move:
      continue

    yield off 
開發者ID:google,項目名稱:ffn,代碼行數:21,代碼來源:train.py

示例3: fit_treatment_model

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logit [as 別名]
def fit_treatment_model(df, term_counts):
	indices = df.post_index.values
	tc = term_counts[indices,:]
	tc = tc.toarray()
	f_z = logit(df.treatment_probability.values)
	print(f_z.shape, tc.shape)
	features = np.column_stack((f_z, tc))
	labels = df.treatment.values

	true_model = LogisticRegression(solver='liblinear')
	true_model.fit(features, labels)
	coeffs = np.array(true_model.coef_).flatten()[1:]
	print(coeffs.mean(), coeffs.std())

	np.random.shuffle(tc)
	features = np.column_stack((f_z, tc))
	permuted = LogisticRegression(solver='liblinear')
	permuted.fit(features, labels)
	permuted_coeffs = np.array(permuted.coef_).flatten()[1:]
	print(permuted_coeffs.mean(), permuted_coeffs.std())


#$E_{Z|W=1}[log P(T=1 | W=1, Z)/ P(T=1| Z)]$ 
開發者ID:blei-lab,項目名稱:causal-text-embeddings,代碼行數:25,代碼來源:test_cond_indep.py

示例4: _perturbed_model

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logit [as 別名]
def _perturbed_model(q_t0, q_t1, g, t, q, eps):
    # helper function for psi_tmle

    h1 = t / q - ((1 - t) * g) / (q * (1 - g))
    full_q = (1.0 - t) * q_t0 + t * q_t1
    perturbed_q = full_q - eps * h1

    def q1(t_cf, epsilon):
        h_cf = t_cf * (1.0 / g) - (1.0 - t_cf) / (1.0 - g)
        full_q = (1.0 - t_cf) * q_t0 + t_cf * q_t1  # predictions from unperturbed model
        return full_q - epsilon * h_cf

    psi_init = np.mean(t * (q1(np.ones_like(t), eps) - q1(np.zeros_like(t), eps))) / q
    h2 = (q_t1 - q_t0 - psi_init) / q
    perturbed_g = expit(logit(g) - eps * h2)

    return perturbed_q, perturbed_g 
開發者ID:blei-lab,項目名稱:causal-text-embeddings,代碼行數:19,代碼來源:att.py

示例5: update_dag_logits

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logit [as 別名]
def update_dag_logits(self, gradient_dicts, weight_decay, max_grad=0.1):
        """
        Updates the probabilities of each path being selected using the given gradients.
        """
        dag_probs = tuple(expit(logit) for logit in self.dags_logits)
        current_average_dag_probs = tuple(np.mean(prob) for prob in dag_probs)

        for i, key in enumerate(self.all_connections):
            for grad_dict, current_average_dag_prob, dag_logits in zip(gradient_dicts, current_average_dag_probs,
                                                                       self.dags_logits):
                if key in grad_dict:
                    grad = grad_dict[key] - weight_decay * (
                            current_average_dag_prob - self.target_ave_prob)  # *expit(dag_logits[i])
                    deriv = sigmoid_derivitive(dag_logits[i])
                    logit_grad = grad * deriv
                    dag_logits[i] += np.clip(logit_grad, -max_grad, max_grad) 
開發者ID:kcyu2014,項目名稱:eval-nas,代碼行數:18,代碼來源:shared_cnn.py

示例6: __init__

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logit [as 別名]
def __init__(self, warp="linear", values=None, range_=None):
        """Build Real space class.

        Parameters
        ----------
        warp : {'linear', 'log', 'logit', 'bilog'}
            Which warping type to apply to the space. The warping is applied in the original space. That is, in a space
            with ``warp='log'`` and ``range_=(2.0, 10.0)``, the value 2.0 warps to ``log(2)``, not ``-inf`` as in some
            other frameworks.
        values : None or list(float)
            Possible values for space to take. Values must be of `float` type.
        range_ : None or :class:`numpy:numpy.ndarray` of shape (2,)
            Array with (lower, upper) pair with limits of space. Note that one must specify `values` or `range_`, but
            not both. `range_` must be composed of `float`.
        """
        assert warp is not None, "warp/space not specified for real"
        Space.__init__(self, np.float_, identity, warp, values, range_) 
開發者ID:uber,項目名稱:bayesmark,代碼行數:19,代碼來源:space.py

示例7: _mh_sample

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logit [as 別名]
def _mh_sample(d_score, init_picked=0, start=1, random=np.random):
    '''Same as `mh_sample` but more obviously correct.
    '''
    assert(np.ndim(d_score) == 1 and len(d_score) > 0)
    assert(0 <= np.min(d_score) and np.max(d_score) <= 1)
    assert(init_picked < start)

    d_last = np.float_(d_score[init_picked])
    picked_round = init_picked
    for ii, d_new in enumerate(d_score[start:], start):
        d_new = np.float_(d_new)

        # Note: we might want to move to log or logit scale for disc probs if
        # this starts to create numerics issues.
        alpha = accept_prob_MH_disc(d_last, d_new)
        assert(0 <= alpha and alpha <= 1)
        if random.rand() <= alpha:
            d_last = d_new
            picked_round = ii
    return picked_round 
開發者ID:uber-research,項目名稱:metropolis-hastings-gans,代碼行數:22,代碼來源:mh.py

示例8: update

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logit [as 別名]
def update(self, prob_map, position):
    """Updates the state after an FFN inference call.

    Args:
      prob_map: object probability map returned by the FFN (in logit space)
      position: postiion of the center of the FoV where inference was performed
          (z, y, x)
    """
    raise NotImplementedError() 
開發者ID:google,項目名稱:ffn,代碼行數:11,代碼來源:movement.py

示例9: __init__

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logit [as 別名]
def __init__(self, eval_shape):
    self.eval_labels = tf.placeholder(
        tf.float32, [1] + eval_shape + [1], name='eval_labels')
    self.eval_preds = tf.placeholder(
        tf.float32, [1] + eval_shape + [1], name='eval_preds')
    self.eval_loss = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(
            logits=self.eval_preds, labels=self.eval_labels))
    self.reset()
    self.eval_threshold = logit(0.9)
    self.sess = None
    self._eval_shape = eval_shape 
開發者ID:google,項目名稱:ffn,代碼行數:14,代碼來源:train.py

示例10: max_pred_offsets

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logit [as 別名]
def max_pred_offsets(model, seed):
  """Generates offsets with the policy used for inference."""
  # Always start at the center.
  queue = deque([(0, 0, 0)])
  done = set()

  train_image_radius = train_image_size(model) // 2
  input_image_radius = np.array(model.input_image_size) // 2

  while queue:
    offset = queue.popleft()

    # Drop any offsets that would take us beyond the image fragment we
    # loaded for training.
    if np.any(np.abs(np.array(offset)) + input_image_radius >
              train_image_radius):
      continue

    # Ignore locations that were visited previously.
    quantized_offset = (
        offset[0] // max(model.deltas[0], 1),
        offset[1] // max(model.deltas[1], 1),
        offset[2] // max(model.deltas[2], 1))

    if quantized_offset in done:
      continue

    done.add(quantized_offset)

    yield offset

    # Look for new offsets within the updated seed.
    curr_seed = mask.crop_and_pad(seed, offset, model.pred_mask_size[::-1])
    todos = sorted(
        movement.get_scored_move_offsets(
            model.deltas[::-1],
            curr_seed[0, ..., 0],
            threshold=logit(FLAGS.threshold)), reverse=True)
    queue.extend((x[2] + offset[0],
                  x[1] + offset[1],
                  x[0] + offset[2]) for _, x in todos) 
開發者ID:google,項目名稱:ffn,代碼行數:43,代碼來源:train.py

示例11: _ppf

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logit [as 別名]
def _ppf(self, q):
        return sc.logit(q) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:4,代碼來源:_continuous_distns.py

示例12: _isf

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logit [as 別名]
def _isf(self, q):
        return -sc.logit(q) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:4,代碼來源:_continuous_distns.py

示例13: check_logit_out

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logit [as 別名]
def check_logit_out(self, dtype, expected):
        a = np.linspace(0,1,10)
        a = np.array(a, dtype=dtype)
        olderr = np.seterr(divide='ignore')
        try:
            actual = logit(a)
        finally:
            np.seterr(**olderr)

        if np.__version__ >= '1.6':
            assert_almost_equal(actual, expected)
        else:
            assert_almost_equal(actual[1:-1], expected[1:-1])

        assert_equal(actual.dtype, np.dtype(dtype)) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:17,代碼來源:test_logit.py

示例14: test_nan

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logit [as 別名]
def test_nan(self):
        expected = np.array([np.nan]*4)
        olderr = np.seterr(invalid='ignore')
        try:
            actual = logit(np.array([-3., -2., 2., 3.]))
        finally:
            np.seterr(**olderr)

        assert_equal(expected, actual) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:11,代碼來源:test_logit.py

示例15: main

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import logit [as 別名]
def main():
	predict_df = get_prediction_file()
	term_counts = load_terms(dataset)
	print(predict_df.shape, term_counts.shape)
	if dataset == 'reddit':
		imbalanced_terms = filter_imbalanced_terms(predict_df, term_counts)
		term_counts = term_counts[:,imbalanced_terms]
		print(term_counts.shape)

	n_bootstraps = 10
	n_w = term_counts.shape[1]
	
	adjusted = np.zeros((n_bootstraps, n_w))
	permuted = np.zeros((n_bootstraps, n_w))
	unadjusted = np.zeros((n_bootstraps, n_w))

	for i in range(n_bootstraps):
		sample = assign_split(predict_df,num_splits=2)
		sample = sample[sample.split==0]
		indices = sample.post_index.values
		labels = sample.treatment.values
		words = term_counts[indices, :]
		propensity_score = logit(sample.treatment_probability.values)
		all_features = np.column_stack((propensity_score, words))
		unadjusted[i,:] = fit_treatment(words, labels, coeff_offset=0)
		adjusted[i,:] = fit_treatment(all_features, labels)
		np.random.shuffle(words)
		permuted_features = np.column_stack((propensity_score, words))
		permuted[i,:] = fit_treatment(permuted_features, labels)

	plot_density(unadjusted, adjusted, permuted) 
開發者ID:blei-lab,項目名稱:causal-text-embeddings,代碼行數:33,代碼來源:plot_adjustment.py


注:本文中的scipy.special.logit方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。