本文整理匯總了Python中scipy.special.legendre方法的典型用法代碼示例。如果您正苦於以下問題:Python special.legendre方法的具體用法?Python special.legendre怎麽用?Python special.legendre使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.special
的用法示例。
在下文中一共展示了special.legendre方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: density_orthopoly
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def density_orthopoly(x, polybase, order=5, xeval=None):
from scipy.special import legendre, hermitenorm, chebyt, chebyu, hermite
#polybase = legendre #chebyt #hermitenorm#
#polybase = chebyt
#polybase = FPoly
#polybase = ChtPoly
#polybase = hermite
#polybase = HPoly
if xeval is None:
xeval = np.linspace(x.min(),x.max(),50)
#polys = [legendre(i) for i in range(order)]
polys = [polybase(i) for i in range(order)]
#coeffs = [(p(x)*(1-x**2)**(-1/2.)).mean() for p in polys]
#coeffs = [(p(x)*np.exp(-x*x)).mean() for p in polys]
coeffs = [(p(x)).mean() for p in polys]
res = sum(c*p(xeval) for c, p in zip(coeffs, polys))
#res *= (1-xeval**2)**(-1/2.)
#res *= np.exp(-xeval**2./2)
return res, xeval, coeffs, polys
示例2: set_func
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def set_func(self, function):
"""Set the function that will be used.
* function - name of function to be used
It will throw an error if an inappropriate function is given
"""
self.function = function
if self.function == 'poly' or self.function == 'polynomial' or self.function == 'power':
self.func = power
elif self.function == 'legendre':
self.func = legendre
elif self.function == 'chebyshev':
self.func = chebyt
elif self.function == 'spline':
self.func = None
else:
msg = '%s is not a valid function' % self.function
raise SpecError(msg)
示例3: feature_transform
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def feature_transform(X, mode='polynomial', degree=1):
poly = PolynomialFeatures(degree)
process_X = poly.fit_transform(X)
if mode == 'legendre':
lege = legendre(degree)
process_X = lege(process_X)
return process_X
示例4: Legendre_matrix
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def Legendre_matrix(N, ctheta):
r"""Matrix of weighted Legendre Polynominals.
Computes a matrix of weighted Legendre polynominals up to order N for
the given angles
.. math::
L_n(\theta) = \frac{2n+1}{4 \pi} P_n(\theta)
Parameters
----------
N : int
Maximum order.
ctheta : (Q,) array_like
Angles.
Returns
-------
Lmn : ((N+1), Q) numpy.ndarray
Matrix containing Legendre polynominals.
"""
if ctheta.ndim == 0:
M = 1
else:
M = len(ctheta)
Lmn = np.zeros([N+1, M], dtype=complex)
for n in range(N+1):
Lmn[n, :] = (2*n+1)/(4*np.pi) * np.polyval(special.legendre(n), ctheta)
return Lmn
示例5: grid_gauss
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def grid_gauss(n):
""" Gauss-Legendre sampling points on sphere.
According to (cf. Rafaely book, sec.3.3)
Parameters
----------
n : int
Maximum order.
Returns
-------
azi : array_like
Azimuth.
colat : array_like
Colatitude.
weights : array_like
Quadrature weights.
"""
azi = np.linspace(0, 2*np.pi, 2*n+2, endpoint=False)
x, weights = np.polynomial.legendre.leggauss(n+1)
colat = np.arccos(x)
azi = np.tile(azi, n+1)
colat = np.repeat(colat, 2*n+2)
weights = np.repeat(weights, 2*n+2)
weights *= np.pi / (n+1) # sum(weights) == 4pi
return azi, colat, weights
示例6: test_legendre
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def test_legendre(self):
leg0 = special.legendre(0)
leg1 = special.legendre(1)
leg2 = special.legendre(2)
leg3 = special.legendre(3)
leg4 = special.legendre(4)
leg5 = special.legendre(5)
assert_equal(leg0.c,[1])
assert_equal(leg1.c,[1,0])
assert_equal(leg2.c,array([3,0,-1])/2.0)
assert_almost_equal(leg3.c,array([5,0,-3,0])/2.0)
assert_almost_equal(leg4.c,array([35,0,-30,0,3])/8.0)
assert_almost_equal(leg5.c,array([63,0,-70,0,15,0])/8.0)
示例7: test_legendre
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def test_legendre(self):
leg0 = special.legendre(0)
leg1 = special.legendre(1)
leg2 = special.legendre(2)
leg3 = special.legendre(3)
leg4 = special.legendre(4)
leg5 = special.legendre(5)
assert_equal(leg0.c, [1])
assert_equal(leg1.c, [1,0])
assert_almost_equal(leg2.c, array([3,0,-1])/2.0, decimal=13)
assert_almost_equal(leg3.c, array([5,0,-3,0])/2.0)
assert_almost_equal(leg4.c, array([35,0,-30,0,3])/8.0)
assert_almost_equal(leg5.c, array([63,0,-70,0,15,0])/8.0)
示例8: set_coef
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def set_coef(self, coef=None):
"""Set the coefficients for the fits for poly, legendre, and chebyshev"""
if coef is None: coef = np.ones(self.order + 1)
self.coef = coef
示例9: harmonics
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def harmonics(self):
r"""
Radial distributions of spherical harmonics
(Legendre polynomials :math:`P_n(\cos \theta)`).
Spherical harmonics are orthogonal with respect to integration over
the full sphere:
.. math::
\iint P_n P_m \,d\Omega =
\int_0^{2\pi} \int_0^\pi P_n(\cos \theta) P_m(\cos \theta)
\,\sin\theta d\theta \,d\varphi = 0
for *n* ≠ *m*; and :math:`P_0(\cos \theta)` is the spherically
averaged intensity.
Returns
-------
Pn : (# terms) × (rmax + 1) numpy array
radial dependences of the :math:`P_n(\cos \theta)` terms
"""
terms = self.cn.shape[0]
# conversion matrix (cos^k → P_n)
CH = np.zeros((terms, terms))
for i in range(terms):
if self.odd:
c = legendre(i).c[::-1]
else:
c = legendre(2 * i).c[::-2]
CH[:len(c), i] = c
CH = inv(CH)
# apply to all radii
harm = CH.dot(self.cn)
return harm
示例10: add_poly
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def add_poly(self, order=0, include_lower=True):
"""Add nth order Legendre polynomial terms as columns to design matrix. Good for adding constant/intercept to model (order = 0) and accounting for slow-frequency nuisance artifacts e.g. linear, quadratic, etc drifts. Care is recommended when using this with `.add_dct_basis()` as some columns will be highly correlated.
Args:
order (int): what order terms to add; 0 = constant/intercept
(default), 1 = linear, 2 = quadratic, etc
include_lower: (bool) whether to add lower order terms if order > 0
"""
if order < 0:
raise ValueError("Order must be 0 or greater")
if self.polys and any(elem.count('_') == 2 for elem in self.polys):
raise AmbiguityError("It appears that this Design Matrix contains polynomial terms that were kept seperate from a previous append operation. This makes it ambiguous for adding polynomials terms. Try calling .add_poly() on each separate Design Matrix before appending them instead.")
polyDict = {}
# Normal/canonical legendre polynomials on the range -1,1 but with size defined by number of observations; keeps all polynomials on similar scales (i.e. big polys don't blow up) and betas are better behaved
norm_order = np.linspace(-1, 1, self.shape[0])
if 'poly_'+str(order) in self.polys:
print("Design Matrix already has {}th order polynomial...skipping".format(order))
return self
if include_lower:
for i in range(order+1):
if 'poly_'+str(i) in self.polys:
print("Design Matrix already has {}th order polynomial...skipping".format(i))
else:
polyDict['poly_' + str(i)] = legendre(i)(norm_order)
else:
polyDict['poly_' + str(order)] = legendre(order)(norm_order)
toAdd = Design_Matrix(polyDict, sampling_freq=self.sampling_freq)
out = self.append(toAdd, axis=1)
if out.polys:
new_polys = out.polys + list(polyDict.keys())
out.polys = new_polys
else:
out.polys = list(polyDict.keys())
return out
示例11: to_poles
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def to_poles(self, poles):
r"""
Invert the measured wedges :math:`\xi(r,mu)` into correlation
multipoles, :math:`\xi_\ell(r)`.
To select a mu_range, use
.. code:: python
poles = self.sel(mu=slice(*mu_range), method='nearest').to_poles(poles)
Parameters
----------
poles: array_like
the list of multipoles to compute
Returns
-------
xi_ell : BinnedStatistic
a data set holding the :math:`\xi_\ell(r)` multipoles
"""
from scipy.special import legendre
from scipy.integrate import quad
# new data array
x = str(self.dims[0])
dtype = numpy.dtype([(x, 'f8')] + [('corr_%d' %ell, 'f8') for ell in poles])
data = numpy.zeros((self.shape[0]), dtype=dtype)
dims = [x]
edges = [self.edges[x]]
# FIXME: use something fancier than the central point.
mu_bins = numpy.diff(self.edges['mu'])
mu_mid = (self.edges['mu'][1:] + self.edges['mu'][:-1])/2.
for ell in poles:
legendrePolynomial = (2.*ell+1.)*legendre(ell)(mu_mid)
data['corr_%d' %ell] = numpy.sum(self['corr']*legendrePolynomial*mu_bins,axis=-1)/numpy.sum(mu_bins)
data[x] = numpy.mean(self[x],axis=-1)
return BinnedStatistic(dims=dims, edges=edges, data=data, poles=poles)
示例12: to_pkmu
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def to_pkmu(self, mu_edges, max_ell):
"""
Invert the measured multipoles :math:`P_\ell(k)` into power
spectrum wedges, :math:`P(k,\mu)`.
Parameters
----------
mu_edges : array_like
the edges of the :math:`\mu` bins
max_ell : int
the maximum multipole to use when computing the wedges;
all even multipoles with :math:`ell` less than or equal
to this number are included
Returns
-------
pkmu : BinnedStatistic
a data set holding the :math:`P(k,\mu)` wedges
"""
from scipy.special import legendre
from scipy.integrate import quad
def compute_coefficient(ell, mumin, mumax):
"""
Compute how much each multipole contributes to a given wedges.
This returns:
.. math::
\frac{1}{\mu_{max} - \mu_{max}} \int_{\mu_{min}}^{\mu^{max}} \mathcal{L}_\ell(\mu)
"""
norm = 1.0 / (mumax - mumin)
return norm * quad(lambda mu: legendre(ell)(mu), mumin, mumax)[0]
# make sure we have all the poles measured
ells = list(range(0, max_ell+1, 2))
if any('power_%d' %ell not in self.poles for ell in ells):
raise ValueError("measurements for ells=%s required if max_ell=%d" %(ells, max_ell))
# new data array
dtype = numpy.dtype([('power', 'c8'), ('k', 'f8'), ('mu', 'f8')])
data = numpy.zeros((self.poles.shape[0], len(mu_edges)-1), dtype=dtype)
# loop over each wedge
bounds = list(zip(mu_edges[:-1], mu_edges[1:]))
for imu, mulims in enumerate(bounds):
# add the contribution from each Pell
for ell in ells:
coeff = compute_coefficient(ell, *mulims)
data['power'][:,imu] += coeff * self.poles['power_%d' %ell]
data['k'][:,imu] = self.poles['k']
data['mu'][:,imu] = numpy.ones(len(data))*0.5*(mulims[1]+mulims[0])
dims = ['k', 'mu']
edges = [self.poles.edges['k'], mu_edges]
return BinnedStatistic(dims=dims, edges=edges, data=data, coords=[self.poles.coords['k'], None], **self.attrs)
示例13: schmidt_norm_legendre
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def schmidt_norm_legendre(x, degree):
""" Evaluate Schmidt semi-normalised Legendre functions and their
derivatives.
"""
# pylint: disable=invalid-name
# TODO: Get more robust algorithm.
# NOTE: This simple reference implementation is prone to truncation
# errors and overflows for higher degrees.
def _eval_functions():
y = (1.0 - x*x)
yield legendre_polynomial(0)(x)
for n in range(1, degree + 1):
leg_pol = legendre_polynomial(n)
yield leg_pol(x)
scale = sqrt(y / ((n * (n + 1))//2))
yield scale * leg_pol.deriv(1)(x)
for m in range(2, n + 1):
scale *= sqrt(y / ((n + m) * (n - m + 1)))
yield scale * leg_pol.deriv(m)(x)
def _eval_derivatives():
yield 0.0
yield p_series[2]
yield -p_series[1]
for n in range(2, degree + 1):
offset = (n*(n + 1))//2
yield sqrt((n*(n + 1))//2) * p_series[offset + 1]
yield 0.5 * (
sqrt((n+2)*(n-1)) * p_series[offset + 2] -
sqrt(2*n*(n + 1)) * p_series[offset]
)
for m in range(2, n):
yield 0.5 * (
sqrt((n+m+1)*(n-m)) * p_series[offset + m + 1] -
sqrt((n+m)*(n-m+1)) * p_series[offset + m - 1]
)
yield -sqrt(n/2.0) * p_series[offset + n - 1]
p_series = list(_eval_functions())
dp_series = list(_eval_derivatives())
return array(p_series), array(dp_series)