當前位置: 首頁>>代碼示例>>Python>>正文


Python special.legendre方法代碼示例

本文整理匯總了Python中scipy.special.legendre方法的典型用法代碼示例。如果您正苦於以下問題:Python special.legendre方法的具體用法?Python special.legendre怎麽用?Python special.legendre使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.special的用法示例。


在下文中一共展示了special.legendre方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: density_orthopoly

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def density_orthopoly(x, polybase, order=5, xeval=None):
    from scipy.special import legendre, hermitenorm, chebyt, chebyu, hermite
    #polybase = legendre  #chebyt #hermitenorm#
    #polybase = chebyt
    #polybase = FPoly
    #polybase = ChtPoly
    #polybase = hermite
    #polybase = HPoly

    if xeval is None:
        xeval = np.linspace(x.min(),x.max(),50)

    #polys = [legendre(i) for i in range(order)]
    polys = [polybase(i) for i in range(order)]
    #coeffs = [(p(x)*(1-x**2)**(-1/2.)).mean() for p in polys]
    #coeffs = [(p(x)*np.exp(-x*x)).mean() for p in polys]
    coeffs = [(p(x)).mean() for p in polys]
    res = sum(c*p(xeval) for c, p in zip(coeffs, polys))
    #res *= (1-xeval**2)**(-1/2.)
    #res *= np.exp(-xeval**2./2)
    return res, xeval, coeffs, polys 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:23,代碼來源:densityorthopoly.py

示例2: set_func

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def set_func(self, function):
        """Set the function that will be used.
        * function - name of function to be used

        It will throw an error if an inappropriate function is given
        """
        self.function = function
        if self.function == 'poly' or self.function == 'polynomial' or self.function == 'power':
            self.func = power
        elif self.function == 'legendre':
            self.func = legendre
        elif self.function == 'chebyshev':
            self.func = chebyt
        elif self.function == 'spline':
            self.func = None
        else:
            msg = '%s is not a valid function' % self.function
            raise SpecError(msg) 
開發者ID:crawfordsm,項目名稱:specidentify,代碼行數:20,代碼來源:iterfit.py

示例3: feature_transform

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def feature_transform(X, mode='polynomial', degree=1):

        poly = PolynomialFeatures(degree)
        process_X = poly.fit_transform(X)

        if mode == 'legendre':
            lege = legendre(degree)
            process_X = lege(process_X)

        return process_X 
開發者ID:fukuball,項目名稱:fuku-ml,代碼行數:12,代碼來源:Utility.py

示例4: Legendre_matrix

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def Legendre_matrix(N, ctheta):
    r"""Matrix of weighted Legendre Polynominals.

    Computes a matrix of weighted Legendre polynominals up to order N for
    the given angles

    .. math::

        L_n(\theta) = \frac{2n+1}{4 \pi} P_n(\theta)

    Parameters
    ----------
    N : int
        Maximum order.
    ctheta : (Q,) array_like
        Angles.

    Returns
    -------
    Lmn : ((N+1), Q) numpy.ndarray
        Matrix containing Legendre polynominals.
    """
    if ctheta.ndim == 0:
        M = 1
    else:
        M = len(ctheta)
    Lmn = np.zeros([N+1, M], dtype=complex)
    for n in range(N+1):
        Lmn[n, :] = (2*n+1)/(4*np.pi) * np.polyval(special.legendre(n), ctheta)

    return Lmn 
開發者ID:spatialaudio,項目名稱:sfa-numpy,代碼行數:33,代碼來源:angular.py

示例5: grid_gauss

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def grid_gauss(n):
    """ Gauss-Legendre sampling points on sphere.

    According to (cf. Rafaely book, sec.3.3)

    Parameters
    ----------
    n : int
        Maximum order.

    Returns
    -------
    azi : array_like
        Azimuth.
    colat : array_like
        Colatitude.
    weights : array_like
        Quadrature weights.
    """
    azi = np.linspace(0, 2*np.pi, 2*n+2, endpoint=False)
    x, weights = np.polynomial.legendre.leggauss(n+1)
    colat = np.arccos(x)
    azi = np.tile(azi, n+1)
    colat = np.repeat(colat, 2*n+2)
    weights = np.repeat(weights, 2*n+2)
    weights *= np.pi / (n+1)      # sum(weights) == 4pi
    return azi, colat, weights 
開發者ID:spatialaudio,項目名稱:sfa-numpy,代碼行數:29,代碼來源:angular.py

示例6: test_legendre

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def test_legendre(self):
        leg0 = special.legendre(0)
        leg1 = special.legendre(1)
        leg2 = special.legendre(2)
        leg3 = special.legendre(3)
        leg4 = special.legendre(4)
        leg5 = special.legendre(5)
        assert_equal(leg0.c,[1])
        assert_equal(leg1.c,[1,0])
        assert_equal(leg2.c,array([3,0,-1])/2.0)
        assert_almost_equal(leg3.c,array([5,0,-3,0])/2.0)
        assert_almost_equal(leg4.c,array([35,0,-30,0,3])/8.0)
        assert_almost_equal(leg5.c,array([63,0,-70,0,15,0])/8.0) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:15,代碼來源:test_basic.py

示例7: test_legendre

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def test_legendre(self):
        leg0 = special.legendre(0)
        leg1 = special.legendre(1)
        leg2 = special.legendre(2)
        leg3 = special.legendre(3)
        leg4 = special.legendre(4)
        leg5 = special.legendre(5)
        assert_equal(leg0.c, [1])
        assert_equal(leg1.c, [1,0])
        assert_almost_equal(leg2.c, array([3,0,-1])/2.0, decimal=13)
        assert_almost_equal(leg3.c, array([5,0,-3,0])/2.0)
        assert_almost_equal(leg4.c, array([35,0,-30,0,3])/8.0)
        assert_almost_equal(leg5.c, array([63,0,-70,0,15,0])/8.0) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:15,代碼來源:test_basic.py

示例8: set_coef

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def set_coef(self, coef=None):
        """Set the coefficients for the fits for poly, legendre, and chebyshev"""
        if coef is None: coef = np.ones(self.order + 1)
        self.coef = coef 
開發者ID:crawfordsm,項目名稱:specidentify,代碼行數:6,代碼來源:iterfit.py

示例9: harmonics

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def harmonics(self):
            r"""
            Radial distributions of spherical harmonics
            (Legendre polynomials :math:`P_n(\cos \theta)`).

            Spherical harmonics are orthogonal with respect to integration over
            the full sphere:

            .. math::
                \iint P_n P_m \,d\Omega =
                \int_0^{2\pi} \int_0^\pi P_n(\cos \theta) P_m(\cos \theta)
                    \,\sin\theta d\theta \,d\varphi = 0

            for *n* ≠ *m*; and :math:`P_0(\cos \theta)` is the spherically
            averaged intensity.

            Returns
            -------
            Pn : (# terms) × (rmax + 1) numpy array
                radial dependences of the :math:`P_n(\cos \theta)` terms
            """
            terms = self.cn.shape[0]
            # conversion matrix (cos^k → P_n)
            CH = np.zeros((terms, terms))
            for i in range(terms):
                if self.odd:
                    c = legendre(i).c[::-1]
                else:
                    c = legendre(2 * i).c[::-2]
                CH[:len(c), i] = c
            CH = inv(CH)
            # apply to all radii
            harm = CH.dot(self.cn)
            return harm 
開發者ID:PyAbel,項目名稱:PyAbel,代碼行數:36,代碼來源:vmi.py

示例10: add_poly

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def add_poly(self, order=0, include_lower=True):
        """Add nth order Legendre polynomial terms as columns to design matrix. Good for adding constant/intercept to model (order = 0) and accounting for slow-frequency nuisance artifacts e.g. linear, quadratic, etc drifts. Care is recommended when using this with `.add_dct_basis()` as some columns will be highly correlated.

        Args:
            order (int): what order terms to add; 0 = constant/intercept
                        (default), 1 = linear, 2 = quadratic, etc
            include_lower: (bool) whether to add lower order terms if order > 0

        """
        if order < 0:
            raise ValueError("Order must be 0 or greater")

        if self.polys and any(elem.count('_') == 2 for elem in self.polys):
            raise AmbiguityError("It appears that this Design Matrix contains polynomial terms that were kept seperate from a previous append operation. This makes it ambiguous for adding polynomials terms. Try calling .add_poly() on each separate Design Matrix before appending them instead.")

        polyDict = {}
        # Normal/canonical legendre polynomials on the range -1,1 but with size defined by number of observations; keeps all polynomials on similar scales (i.e. big polys don't blow up) and betas are better behaved
        norm_order = np.linspace(-1, 1, self.shape[0])

        if 'poly_'+str(order) in self.polys:
            print("Design Matrix already has {}th order polynomial...skipping".format(order))
            return self

        if include_lower:
            for i in range(order+1):
                if 'poly_'+str(i) in self.polys:
                    print("Design Matrix already has {}th order polynomial...skipping".format(i))
                else:
                    polyDict['poly_' + str(i)] = legendre(i)(norm_order)
        else:
            polyDict['poly_' + str(order)] = legendre(order)(norm_order)

        toAdd = Design_Matrix(polyDict, sampling_freq=self.sampling_freq)
        out = self.append(toAdd, axis=1)
        if out.polys:
            new_polys = out.polys + list(polyDict.keys())
            out.polys = new_polys
        else:
            out.polys = list(polyDict.keys())
        return out 
開發者ID:cosanlab,項目名稱:nltools,代碼行數:42,代碼來源:design_matrix.py

示例11: to_poles

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def to_poles(self, poles):
        r"""
        Invert the measured wedges :math:`\xi(r,mu)` into correlation
        multipoles, :math:`\xi_\ell(r)`.

        To select a mu_range, use

        .. code:: python

            poles = self.sel(mu=slice(*mu_range), method='nearest').to_poles(poles)

        Parameters
        ----------
        poles: array_like
            the list of multipoles to compute

        Returns
        -------
        xi_ell : BinnedStatistic
            a data set holding the :math:`\xi_\ell(r)` multipoles
        """
        from scipy.special import legendre
        from scipy.integrate import quad

        # new data array
        x = str(self.dims[0])
        dtype = numpy.dtype([(x, 'f8')] + [('corr_%d' %ell, 'f8') for ell in poles])
        data = numpy.zeros((self.shape[0]), dtype=dtype)
        dims = [x]
        edges = [self.edges[x]]

        # FIXME: use something fancier than the central point.
        mu_bins = numpy.diff(self.edges['mu'])
        mu_mid = (self.edges['mu'][1:] + self.edges['mu'][:-1])/2.

        for ell in poles:
            legendrePolynomial = (2.*ell+1.)*legendre(ell)(mu_mid)
            data['corr_%d' %ell] = numpy.sum(self['corr']*legendrePolynomial*mu_bins,axis=-1)/numpy.sum(mu_bins)

        data[x] = numpy.mean(self[x],axis=-1)

        return BinnedStatistic(dims=dims, edges=edges, data=data, poles=poles) 
開發者ID:bccp,項目名稱:nbodykit,代碼行數:44,代碼來源:estimators.py

示例12: to_pkmu

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def to_pkmu(self, mu_edges, max_ell):
        """
        Invert the measured multipoles :math:`P_\ell(k)` into power
        spectrum wedges, :math:`P(k,\mu)`.

        Parameters
        ----------
        mu_edges : array_like
            the edges of the :math:`\mu` bins
        max_ell : int
            the maximum multipole to use when computing the wedges;
            all even multipoles with :math:`ell` less than or equal
            to this number are included

        Returns
        -------
        pkmu : BinnedStatistic
            a data set holding the :math:`P(k,\mu)` wedges
        """
        from scipy.special import legendre
        from scipy.integrate import quad

        def compute_coefficient(ell, mumin, mumax):
            """
            Compute how much each multipole contributes to a given wedges.
            This returns:

            .. math::
                \frac{1}{\mu_{max} - \mu_{max}} \int_{\mu_{min}}^{\mu^{max}} \mathcal{L}_\ell(\mu)
            """
            norm = 1.0 / (mumax - mumin)
            return norm * quad(lambda mu: legendre(ell)(mu), mumin, mumax)[0]

        # make sure we have all the poles measured
        ells = list(range(0, max_ell+1, 2))
        if any('power_%d' %ell not in self.poles for ell in ells):
            raise ValueError("measurements for ells=%s required if max_ell=%d" %(ells, max_ell))

        # new data array
        dtype = numpy.dtype([('power', 'c8'), ('k', 'f8'), ('mu', 'f8')])
        data = numpy.zeros((self.poles.shape[0], len(mu_edges)-1), dtype=dtype)

        # loop over each wedge
        bounds = list(zip(mu_edges[:-1], mu_edges[1:]))
        for imu, mulims in enumerate(bounds):

            # add the contribution from each Pell
            for ell in ells:
                coeff = compute_coefficient(ell, *mulims)
                data['power'][:,imu] += coeff * self.poles['power_%d' %ell]

            data['k'][:,imu] = self.poles['k']
            data['mu'][:,imu] = numpy.ones(len(data))*0.5*(mulims[1]+mulims[0])

        dims = ['k', 'mu']
        edges = [self.poles.edges['k'], mu_edges]
        return BinnedStatistic(dims=dims, edges=edges, data=data, coords=[self.poles.coords['k'], None], **self.attrs) 
開發者ID:bccp,項目名稱:nbodykit,代碼行數:59,代碼來源:fkp.py

示例13: schmidt_norm_legendre

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import legendre [as 別名]
def schmidt_norm_legendre(x, degree):
        """ Evaluate Schmidt semi-normalised Legendre functions and their
        derivatives.
        """
        # pylint: disable=invalid-name

        # TODO: Get more robust algorithm.
        # NOTE: This simple reference implementation is prone to truncation
        # errors and overflows for higher degrees.

        def _eval_functions():
            y = (1.0 - x*x)
            yield legendre_polynomial(0)(x)
            for n in range(1, degree + 1):
                leg_pol = legendre_polynomial(n)
                yield leg_pol(x)
                scale = sqrt(y / ((n * (n + 1))//2))
                yield scale * leg_pol.deriv(1)(x)
                for m  in range(2, n + 1):
                    scale *= sqrt(y / ((n + m) * (n - m + 1)))
                    yield scale * leg_pol.deriv(m)(x)

        def _eval_derivatives():
            yield 0.0
            yield p_series[2]
            yield -p_series[1]
            for n in range(2, degree + 1):
                offset = (n*(n + 1))//2
                yield sqrt((n*(n + 1))//2) * p_series[offset + 1]
                yield 0.5 * (
                    sqrt((n+2)*(n-1)) * p_series[offset + 2] -
                    sqrt(2*n*(n + 1)) * p_series[offset]
                )
                for m in range(2, n):
                    yield 0.5 * (
                        sqrt((n+m+1)*(n-m)) * p_series[offset + m + 1] -
                        sqrt((n+m)*(n-m+1)) * p_series[offset + m - 1]
                    )
                yield -sqrt(n/2.0) * p_series[offset + n - 1]

        p_series = list(_eval_functions())
        dp_series = list(_eval_derivatives())

        return array(p_series), array(dp_series) 
開發者ID:igp-gravity,項目名稱:geoist,代碼行數:46,代碼來源:pymm_legendre.py


注:本文中的scipy.special.legendre方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。