本文整理匯總了Python中scipy.special.lambertw方法的典型用法代碼示例。如果您正苦於以下問題:Python special.lambertw方法的具體用法?Python special.lambertw怎麽用?Python special.lambertw使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.special
的用法示例。
在下文中一共展示了special.lambertw方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_wrightomega_region2
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lambertw [as 別名]
def test_wrightomega_region2():
# This region gets less coverage in the TestSystematic test
x = np.linspace(-2, 1)
y = np.linspace(-2*np.pi, -1)
x, y = np.meshgrid(x, y)
z = (x + 1j*y).flatten()
dataset = []
for z0 in z:
dataset.append((z0, complex(_mpmath_wrightomega(z0, 25))))
dataset = np.asarray(dataset)
FuncData(sc.wrightomega, dataset, 0, 1, rtol=1e-15).check()
# ------------------------------------------------------------------------------
# lambertw
# ------------------------------------------------------------------------------
示例2: prox_max_entropy
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lambertw [as 別名]
def prox_max_entropy(X, step, gamma=1, type="relative"):
"""Proximal operator for maximum entropy regularization.
g(x) = gamma sum_i x_i ln(x_i)
has the analytical solution of gamma W(1/gamma exp((X-gamma)/gamma)), where
W is the Lambert W function.
If type == 'relative', the penalty is expressed in units of the function value;
if type == 'absolute', it's expressed in units of the variable `X`.
"""
from scipy.special import lambertw
assert type in ["relative", "absolute"]
if type == "relative":
gamma_ = _step_gamma(step, gamma)
else:
gamma_ = gamma
# minimize entropy: return gamma_ * np.real(lambertw(np.exp((X - gamma_) / gamma_) / gamma_))
above = X > 0
X[above] = gamma_ * np.real(lambertw(np.exp(X[above] / gamma_ - 1) / gamma_))
return X
示例3: test_ufunc
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lambertw [as 別名]
def test_ufunc():
assert_array_almost_equal(
lambertw(r_[0., e, 1.]), r_[0., 1., 0.567143290409783873])
示例4: test_lambertw
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lambertw [as 別名]
def test_lambertw(self):
assert_mpmath_equal(lambda x, k: sc.lambertw(x, int(k)),
lambda x, k: mpmath.lambertw(x, int(k)),
[Arg(), IntArg(0, 10)])
示例5: test_lambertw
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lambertw [as 別名]
def test_lambertw(self):
# python-list/2010-December/594592.html
xxroot = fixed_point(lambda xx: np.exp(-2.0*xx)/2.0, 1.0,
args=(), xtol=1e-12, maxiter=500)
assert_allclose(xxroot, np.exp(-2.0*xxroot)/2.0)
assert_allclose(xxroot, lambertw(1)/2)
示例6: test_lambertw_ufunc_loop_selection
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lambertw [as 別名]
def test_lambertw_ufunc_loop_selection():
# see https://github.com/scipy/scipy/issues/4895
dt = np.dtype(np.complex128)
assert_equal(lambertw(0, 0, 0).dtype, dt)
assert_equal(lambertw([0], 0, 0).dtype, dt)
assert_equal(lambertw(0, [0], 0).dtype, dt)
assert_equal(lambertw(0, 0, [0]).dtype, dt)
assert_equal(lambertw([0], [0], [0]).dtype, dt)
示例7: _mpmath_wrightomega
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lambertw [as 別名]
def _mpmath_wrightomega(z, dps):
with mpmath.workdps(dps):
z = mpmath.mpc(z)
unwind = mpmath.ceil((z.imag - mpmath.pi)/(2*mpmath.pi))
res = mpmath.lambertw(mpmath.exp(z), unwind)
return res
示例8: test_lambertw_real
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lambertw [as 別名]
def test_lambertw_real(self):
assert_mpmath_equal(lambda x, k: sc.lambertw(x, int(k.real)),
lambda x, k: mpmath.lambertw(x, int(k.real)),
[ComplexArg(-np.inf, np.inf), IntArg(0, 10)],
rtol=1e-13, nan_ok=False)
示例9: main
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lambertw [as 別名]
def main():
parser = argparse.ArgumentParser(
description="Estimates parameter for scheduled sampling.")
parser.add_argument("--value", type=float, required=True,
help="The value the threshold should achieve.")
parser.add_argument("--step", type=int, required=True,
help="Step when you want to achieve the value.")
args = parser.parse_args()
x = args.step
c = args.value
coeff = c * np.exp(lambertw((1 - c) / c * x)) / (1 - c)
print(coeff.real)
示例10: lambertw
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lambertw [as 別名]
def lambertw(*args, **kwargs):
from scipy.special import lambertw
return lambertw(*args, **kwargs)
示例11: erf
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lambertw [as 別名]
def erf(*args, **kwargs):
from scipy.special import erf
return erf(*args, **kwargs)
# from scipy.special import lambertw, ellipe, gammaincc, gamma # fluids
# from scipy.special import i1, i0, k1, k0, iv # ht
# from scipy.special import hyp2f1
# if erf is None:
# from scipy.special import erf
示例12: w_d
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lambertw [as 別名]
def w_d(z, delta):
# Eq. 9
if delta < _EPS:
return z
return np.sign(z) * np.sqrt(np.real(special.lambertw(delta * z ** 2)) / delta)
示例13: _lambertw_i_from_v
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import lambertw [as 別名]
def _lambertw_i_from_v(resistance_shunt, resistance_series, nNsVth, voltage,
saturation_current, photocurrent):
try:
from scipy.special import lambertw
except ImportError:
raise ImportError('This function requires scipy')
# Record if inputs were all scalar
output_is_scalar = all(map(np.isscalar,
[resistance_shunt, resistance_series, nNsVth,
voltage, saturation_current, photocurrent]))
# This transforms Gsh=1/Rsh, including ideal Rsh=np.inf into Gsh=0., which
# is generally more numerically stable
conductance_shunt = 1. / resistance_shunt
# Ensure that we are working with read-only views of numpy arrays
# Turns Series into arrays so that we don't have to worry about
# multidimensional broadcasting failing
Gsh, Rs, a, V, I0, IL = \
np.broadcast_arrays(conductance_shunt, resistance_series, nNsVth,
voltage, saturation_current, photocurrent)
# Intitalize output I (V might not be float64)
I = np.full_like(V, np.nan, dtype=np.float64) # noqa: E741, N806
# Determine indices where 0 < Rs requires implicit model solution
idx_p = 0. < Rs
# Determine indices where 0 = Rs allows explicit model solution
idx_z = 0. == Rs
# Explicit solutions where Rs=0
if np.any(idx_z):
I[idx_z] = IL[idx_z] - I0[idx_z] * np.expm1(V[idx_z] / a[idx_z]) - \
Gsh[idx_z] * V[idx_z]
# Only compute using LambertW if there are cases with Rs>0
# Does NOT handle possibility of overflow, github issue 298
if np.any(idx_p):
# LambertW argument, cannot be float128, may overflow to np.inf
argW = Rs[idx_p] * I0[idx_p] / (
a[idx_p] * (Rs[idx_p] * Gsh[idx_p] + 1.)) * \
np.exp((Rs[idx_p] * (IL[idx_p] + I0[idx_p]) + V[idx_p]) /
(a[idx_p] * (Rs[idx_p] * Gsh[idx_p] + 1.)))
# lambertw typically returns complex value with zero imaginary part
# may overflow to np.inf
lambertwterm = lambertw(argW).real
# Eqn. 2 in Jain and Kapoor, 2004
# I = -V/(Rs + Rsh) - (a/Rs)*lambertwterm + Rsh*(IL + I0)/(Rs + Rsh)
# Recast in terms of Gsh=1/Rsh for better numerical stability.
I[idx_p] = (IL[idx_p] + I0[idx_p] - V[idx_p] * Gsh[idx_p]) / \
(Rs[idx_p] * Gsh[idx_p] + 1.) - (
a[idx_p] / Rs[idx_p]) * lambertwterm
if output_is_scalar:
return I.item()
else:
return I