本文整理匯總了Python中scipy.special.j1方法的典型用法代碼示例。如果您正苦於以下問題:Python special.j1方法的具體用法?Python special.j1怎麽用?Python special.j1使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.special
的用法示例。
在下文中一共展示了special.j1方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _encircled_energy_core
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import j1 [as 別名]
def _encircled_energy_core(mtf_data, radius, nu_p, dx, dy):
"""Core computation of encircled energy, based on Baliga 1988.
Parameters
----------
mtf_data : `numpy.ndarray`
unaliased MTF data
radius : `float`
radius of "detector"
nu_p : `numpy.ndarray`
radial spatial frequencies
dx : `float`
x frequency delta
dy : `float`
y frequency delta
Returns
-------
`float`
encircled energy for given radius
"""
integration_fourier = special.j1(2 * e.pi * radius * nu_p) / nu_p
dat = mtf_data * integration_fourier
return radius * dat.sum() * dx * dy
示例2: _analytical_encircled_energy
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import j1 [as 別名]
def _analytical_encircled_energy(fno, wavelength, points):
"""Compute the analytical encircled energy for a diffraction limited circular aperture.
Parameters
----------
fno : `float`
F/#
wavelength : `float`
wavelength of light
points : `numpy.ndarray`
radii of "detector"
Returns
-------
`numpy.ndarray`
encircled energy values
"""
p = points * e.pi / fno / wavelength
return 1 - special.j0(p)**2 - special.j1(p)**2
示例3: spectral_density
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import j1 [as 別名]
def spectral_density(self, k): # noqa: D102
k = np.array(k, dtype=np.double)
res = np.empty_like(k)
kl = k * self.len_scale
kl_gz = kl > 0
# for k=0 we calculate the limit by hand
if self.dim == 1:
res[kl_gz] = (1.0 - np.cos(kl[kl_gz])) / (
np.pi * k[kl_gz] * kl[kl_gz]
)
res[np.logical_not(kl_gz)] = self.len_scale / 2.0 / np.pi
elif self.dim == 2:
res[kl_gz] = sps.j1(kl[kl_gz] / 2.0) ** 2 / np.pi / k[kl_gz] ** 2
res[np.logical_not(kl_gz)] = self.len_scale ** 2 / 16.0 / np.pi
else:
res[kl_gz] = -(
12 * kl[kl_gz] * np.sin(kl[kl_gz])
+ (12 - 3 * kl[kl_gz] ** 2) * np.cos(kl[kl_gz])
- 3 * kl[kl_gz] ** 2
- 12
) / (2 * np.pi ** 2 * kl[kl_gz] ** 3 * k[kl_gz] ** 3)
res[np.logical_not(kl_gz)] = (
self.len_scale ** 3 / 48.0 / np.pi ** 2
)
return res
示例4: airy_disk
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import j1 [as 別名]
def airy_disk(x):
return np.power( 2.*j1(x)/(x) , 2)
# generate a (2*size+1,2*size+1) convolution kernel with "radii" scale
# where the function above is assumed to have "radius" one
# scale is a 3-vector for RGB
示例5: test_j1
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import j1 [as 別名]
def test_j1(self):
assert_equal(cephes.j1(0),0.0)
示例6: test_j1
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import j1 [as 別名]
def test_j1(self):
# See comment in test_j0
assert_mpmath_equal(sc.j1,
mpmath.j1,
[Arg(-1e3, 1e3)])
assert_mpmath_equal(sc.j1,
mpmath.j1,
[Arg(-1e8, 1e8)],
rtol=1e-5)
示例7: perpendicular_attenuation
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import j1 [as 別名]
def perpendicular_attenuation(self, q, tau, diameter):
"Implements the finite time Callaghan model for cylinders"
radius = diameter / 2.
alpha = self.alpha
q_argument = 2 * np.pi * q * radius
q_argument_2 = q_argument ** 2
res = np.zeros_like(q)
J = special.j1(q_argument) ** 2
for k in range(0, self.alpha.shape[0]):
alpha2 = alpha[k, 0] ** 2
update = (
4 * np.exp(-alpha2 * self.diffusion_perpendicular *
tau / radius ** 2) *
q_argument_2 /
(q_argument_2 - alpha2) ** 2 * J
)
res += update
for m in range(1, self.alpha.shape[1]):
J = special.jvp(m, q_argument, 1)
q_argument_J = (q_argument * J) ** 2
for k in range(self.alpha.shape[0]):
alpha2 = self.alpha[k, m] ** 2
update = (
8 * np.exp(-alpha2 * self.diffusion_perpendicular *
tau / radius ** 2) *
alpha2 / (alpha2 - m ** 2) *
q_argument_J /
(q_argument_2 - alpha2) ** 2
)
res += update
return res
示例8: test_radial_reduction
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import j1 [as 別名]
def test_radial_reduction():
"""radial reduction example"""
x = np.linspace(-2,2, 64)
y = x[:, None]
x = x[None, :]
R = np.sqrt(x**2+y**2)
def airy(r, sigma):
from scipy.special import j1
r = r / sigma * np.sqrt(2)
a = (2*j1(r)/r)**2
a[r==0] = 1
return a
def gauss(r, sigma):
return np.exp(-(r/sigma)**2)
distribution = np.random.choice([gauss, airy])(R, 0.3)
sample = np.random.poisson(distribution*200+10).astype(np.float)
#is this an airy or gaussian function? hard to tell with all this noise!
plt.imshow(sample, interpolation='nearest', cmap='gray')
plt.show()
#radial reduction to the rescue!
#if we are sampling an airy function, you will see a small but significant rise around x=1
g = group_by(np.round(R, 5).flatten())
plt.errorbar(
g.unique,
g.mean(sample.flatten())[1],
g.std (sample.flatten())[1] / np.sqrt(g.count))
plt.xlim(0, 2)
plt.show()
示例9: sears_lift_sin_gust
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import j1 [as 別名]
def sears_lift_sin_gust(w0, L, Uinf, chord, tv):
"""
Returns the lift coefficient for a sinusoidal gust (see set_gust.sin) as
the imaginary part of the CL complex function defined below. The input gust
must be the imaginary part of
.. math:: wgust = w0*\exp(1.0j*C*(Ux*S.time[tt] - xcoord) )
with:
.. math:: C=2\pi/L
and ``xcoord=0`` at the aerofoil half-chord.
"""
# reduced frequency
kg = np.pi * chord / L
# Theo's funciton
Ctheo = theo_fun(kg)
# Sear's function
J0, J1 = scsp.j0(kg), scsp.j1(kg)
S = (J0 - 1.0j * J1) * Ctheo + 1.0j * J1
phase = np.angle(S)
CL = 2. * np.pi * w0 / Uinf * np.abs(S) * np.sin(2. * np.pi * Uinf / L * tv + phase)
return CL
示例10: quad
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import j1 [as 別名]
def quad(sPJ0r, sPJ0i, sPJ1r, sPJ1i, sPJ0br, sPJ0bi, ab, off, ang_fact, iinp):
r"""Quadrature for Hankel transform.
This is the kernel of the QUAD method, used for the Hankel transforms
:func:`hankel_quad` and :func:`hankel_qwe` (where the integral is not
suited for QWE).
"""
# Define the quadrature kernels
def quad_PJ0(klambd, sPJ0, koff):
r"""Quadrature for PJ0."""
return sPJ0(np.log(klambd))*special.j0(koff*klambd)
def quad_PJ1(klambd, sPJ1, ab, koff, kang):
r"""Quadrature for PJ1."""
tP1 = kang*sPJ1(np.log(klambd))
if ab in [11, 12, 21, 22, 14, 24, 15, 25]: # Because of J2
# J2(kr) = 2/(kr)*J1(kr) - J0(kr)
tP1 /= koff
return tP1*special.j1(koff*klambd)
def quad_PJ0b(klambd, sPJ0b, koff, kang):
r"""Quadrature for PJ0b."""
return kang*sPJ0b(np.log(klambd))*special.j0(koff*klambd)
# Pre-allocate output
conv = True
out = np.array(0.0+0.0j)
# Carry out quadrature for required kernels
iinp['full_output'] = 1
if sPJ0r is not None:
re = integrate.quad(quad_PJ0, args=(sPJ0r, off), **iinp)
im = integrate.quad(quad_PJ0, args=(sPJ0i, off), **iinp)
out += re[0] + 1j*im[0]
# If there is a fourth output from QUAD, it means it did not converge
if (len(re) or len(im)) > 3:
conv = False
if sPJ1r is not None:
re = integrate.quad(quad_PJ1, args=(sPJ1r, ab, off, ang_fact), **iinp)
im = integrate.quad(quad_PJ1, args=(sPJ1i, ab, off, ang_fact), **iinp)
out += re[0] + 1j*im[0]
# If there is a fourth output from QUAD, it means it did not converge
if (len(re) or len(im)) > 3:
conv = False
if sPJ0br is not None:
re = integrate.quad(quad_PJ0b, args=(sPJ0br, off, ang_fact), **iinp)
im = integrate.quad(quad_PJ0b, args=(sPJ0bi, off, ang_fact), **iinp)
out += re[0] + 1j*im[0]
# If there is a fourth output from QUAD, it means it did not converge
if (len(re) or len(im)) > 3:
conv = False
# Collect the results
return out, conv