本文整理匯總了Python中scipy.special.j0方法的典型用法代碼示例。如果您正苦於以下問題:Python special.j0方法的具體用法?Python special.j0怎麽用?Python special.j0使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.special
的用法示例。
在下文中一共展示了special.j0方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _analytical_encircled_energy
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import j0 [as 別名]
def _analytical_encircled_energy(fno, wavelength, points):
"""Compute the analytical encircled energy for a diffraction limited circular aperture.
Parameters
----------
fno : `float`
F/#
wavelength : `float`
wavelength of light
points : `numpy.ndarray`
radii of "detector"
Returns
-------
`numpy.ndarray`
encircled energy values
"""
p = points * e.pi / fno / wavelength
return 1 - special.j0(p)**2 - special.j1(p)**2
示例2: test_j0
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import j0 [as 別名]
def test_j0(self):
assert_equal(cephes.j0(0),1.0)
示例3: test_j0
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import j0 [as 別名]
def test_j0(self):
# The Bessel function at large arguments is j0(x) ~ cos(x + phi)/sqrt(x)
# and at large arguments the phase of the cosine loses precision.
#
# This is numerically expected behavior, so we compare only up to
# 1e8 = 1e15 * 1e-7
assert_mpmath_equal(sc.j0,
mpmath.j0,
[Arg(-1e3, 1e3)])
assert_mpmath_equal(sc.j0,
mpmath.j0,
[Arg(-1e8, 1e8)],
rtol=1e-5)
示例4: sears_lift_sin_gust
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import j0 [as 別名]
def sears_lift_sin_gust(w0, L, Uinf, chord, tv):
"""
Returns the lift coefficient for a sinusoidal gust (see set_gust.sin) as
the imaginary part of the CL complex function defined below. The input gust
must be the imaginary part of
.. math:: wgust = w0*\exp(1.0j*C*(Ux*S.time[tt] - xcoord) )
with:
.. math:: C=2\pi/L
and ``xcoord=0`` at the aerofoil half-chord.
"""
# reduced frequency
kg = np.pi * chord / L
# Theo's funciton
Ctheo = theo_fun(kg)
# Sear's function
J0, J1 = scsp.j0(kg), scsp.j1(kg)
S = (J0 - 1.0j * J1) * Ctheo + 1.0j * J1
phase = np.angle(S)
CL = 2. * np.pi * w0 / Uinf * np.abs(S) * np.sin(2. * np.pi * Uinf / L * tv + phase)
return CL
示例5: _hankel2_0
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import j0 [as 別名]
def _hankel2_0(x):
"""Wrapper for Hankel function of the second type using fast versions
of the Bessel functions of first/second kind in scipy"""
return _special.j0(x) - 1j * _special.y0(x)
示例6: quad
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import j0 [as 別名]
def quad(sPJ0r, sPJ0i, sPJ1r, sPJ1i, sPJ0br, sPJ0bi, ab, off, ang_fact, iinp):
r"""Quadrature for Hankel transform.
This is the kernel of the QUAD method, used for the Hankel transforms
:func:`hankel_quad` and :func:`hankel_qwe` (where the integral is not
suited for QWE).
"""
# Define the quadrature kernels
def quad_PJ0(klambd, sPJ0, koff):
r"""Quadrature for PJ0."""
return sPJ0(np.log(klambd))*special.j0(koff*klambd)
def quad_PJ1(klambd, sPJ1, ab, koff, kang):
r"""Quadrature for PJ1."""
tP1 = kang*sPJ1(np.log(klambd))
if ab in [11, 12, 21, 22, 14, 24, 15, 25]: # Because of J2
# J2(kr) = 2/(kr)*J1(kr) - J0(kr)
tP1 /= koff
return tP1*special.j1(koff*klambd)
def quad_PJ0b(klambd, sPJ0b, koff, kang):
r"""Quadrature for PJ0b."""
return kang*sPJ0b(np.log(klambd))*special.j0(koff*klambd)
# Pre-allocate output
conv = True
out = np.array(0.0+0.0j)
# Carry out quadrature for required kernels
iinp['full_output'] = 1
if sPJ0r is not None:
re = integrate.quad(quad_PJ0, args=(sPJ0r, off), **iinp)
im = integrate.quad(quad_PJ0, args=(sPJ0i, off), **iinp)
out += re[0] + 1j*im[0]
# If there is a fourth output from QUAD, it means it did not converge
if (len(re) or len(im)) > 3:
conv = False
if sPJ1r is not None:
re = integrate.quad(quad_PJ1, args=(sPJ1r, ab, off, ang_fact), **iinp)
im = integrate.quad(quad_PJ1, args=(sPJ1i, ab, off, ang_fact), **iinp)
out += re[0] + 1j*im[0]
# If there is a fourth output from QUAD, it means it did not converge
if (len(re) or len(im)) > 3:
conv = False
if sPJ0br is not None:
re = integrate.quad(quad_PJ0b, args=(sPJ0br, off, ang_fact), **iinp)
im = integrate.quad(quad_PJ0b, args=(sPJ0bi, off, ang_fact), **iinp)
out += re[0] + 1j*im[0]
# If there is a fourth output from QUAD, it means it did not converge
if (len(re) or len(im)) > 3:
conv = False
# Collect the results
return out, conv