本文整理匯總了Python中scipy.special.i0方法的典型用法代碼示例。如果您正苦於以下問題:Python special.i0方法的具體用法?Python special.i0怎麽用?Python special.i0使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.special
的用法示例。
在下文中一共展示了special.i0方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: estimate_kappa
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import i0 [as 別名]
def estimate_kappa(N, ssx, scx):
if N == 0:
return 10.**-6
elif N == 1:
return 10*pi
else:
rbar2 = (ssx / N) ** 2. + (scx / N) ** 2.
rbar = rbar2 ** .5
kappa = rbar*(2. - rbar2) / (1. - rbar2)
A_p = lambda k : bessel_1(k) / bessel_0(k)
Apk = A_p(kappa)
kappa_1 = kappa - (Apk - rbar)/(1. - Apk**2 - (1. / kappa) * Apk)
Apk = A_p(kappa_1)
kappa = kappa_1 - (Apk - rbar)/(1. - Apk**2 - (1. / kappa_1) * Apk)
Apk = A_p(kappa)
kappa_1 = kappa - (Apk - rbar)/(1. - Apk**2 - (1. / kappa) * Apk)
Apk = A_p(kappa_1)
kappa = kappa_1 - (Apk - rbar)/(1. - Apk**2 - (1. / kappa_1) * Apk)
if isnan(kappa):
return 10.**-6
else:
return abs(kappa)
示例2: mmse_stsa
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import i0 [as 別名]
def mmse_stsa(xi, gamma):
"""
Computes the MMSE-STSA gain function.
Argument/s:
xi - a priori SNR.
gamma - a posteriori SNR.
Returns:
G - MMSE-STSA gain function.
"""
nu = np.multiply(xi, np.divide(gamma, np.add(1, xi)))
G = np.multiply(np.multiply(np.multiply(np.divide(np.sqrt(np.pi), 2),
np.divide(np.sqrt(nu), gamma)), np.exp(np.divide(-nu,2))),
np.add(np.multiply(np.add(1, nu), i0(np.divide(nu,2))),
np.multiply(nu, i1(np.divide(nu, 2))))) # MMSE-STSA gain function.
idx = np.isnan(G) | np.isinf(G) # replace by Wiener gain.
G[idx] = np.divide(xi[idx], np.add(1, xi[idx])) # Wiener gain.
return G
示例3: kaiserbessel_eval
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import i0 [as 別名]
def kaiserbessel_eval(x, p):
"""
Parameters
----------
x: array-like
arguments to the KB function
p: array-like
The Kaiser-Bessel window parameters [alpha, tau] (wikipedia) or [beta, W/2] (Jackson, J. I., Meyer, C. H.,
Nishimura, D. G. & Macovski, A. Selection of a convolution function for Fourier inversion using gridding
[computerised tomography application]. IEEE Trans. Med. Imaging 10, 473–478 (1991))
Returns
-------
"""
normfac = sps.i0(p[0] * np.sqrt(1.0 - np.square((0.0 / p[1])))) / p[1]
return np.where(np.fabs(x) <= p[1], sps.i0(p[0] * np.sqrt(1.0 - np.square((x / p[1])))) / p[1] / normfac, 0.0)
示例4: log_bessel_0
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import i0 [as 別名]
def log_bessel_0(x):
besa = bessel_0(x)
# If bessel_0(a) is inf, then use the exponential approximation to
# prevent numerical overflow.
if isinf(besa):
I0 = x - .5*log(2*pi*x)
else:
I0 = log(besa)
return I0
示例5: von_mises_cdf_normalapprox
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import i0 [as 別名]
def von_mises_cdf_normalapprox(k, x):
b = np.sqrt(2/np.pi)*np.exp(k)/i0(k)
z = b*np.sin(x/2.)
return scipy.stats.norm.cdf(z)
示例6: _pdf
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import i0 [as 別名]
def _pdf(self, x, b):
# rice.pdf(x, b) = x * exp(-(x**2+b**2)/2) * I[0](x*b)
#
# We use (x**2 + b**2)/2 = ((x-b)**2)/2 + xb.
# The factor of np.exp(-xb) is then included in the i0e function
# in place of the modified Bessel function, i0, improving
# numerical stability for large values of xb.
return x * np.exp(-(x-b)*(x-b)/2.0) * sc.i0e(x*b)
示例7: _entropy
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import i0 [as 別名]
def _entropy(self, kappa):
return (-kappa * sc.i1(kappa) / sc.i0(kappa) +
np.log(2 * np.pi * sc.i0(kappa)))
示例8: von_mises_cdf_normalapprox
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import i0 [as 別名]
def von_mises_cdf_normalapprox(k,x,C1):
b = np.sqrt(2/np.pi)*np.exp(k)/i0(k)
z = b*np.sin(x/2.)
C = 24*k
chi = z - z**3/((C-2*z**2-16)/3.-(z**4+7/4.*z**2+167./2)/(C+C1-z**2+3))**2
return scipy.stats.norm.cdf(z)
示例9: test_i0
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import i0 [as 別名]
def test_i0(self):
assert_equal(cephes.i0(0),1.0)
示例10: test_i0_series
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import i0 [as 別名]
def test_i0_series(self):
for z in [1., 10., 200.5]:
value, err = self.iv_series(0, z)
assert_tol_equal(special.i0(z), value, atol=err, err_msg=z)
示例11: test_rice_overflow
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import i0 [as 別名]
def test_rice_overflow(self):
# rice.pdf(999, 0.74) was inf since special.i0 silentyly overflows
# check that using i0e fixes it
assert_(np.isfinite(stats.rice.pdf(999, 0.74)))
assert_(np.isfinite(stats.rice.expect(lambda x: 1, args=(0.74,))))
assert_(np.isfinite(stats.rice.expect(lambda x: 2, args=(0.74,))))
assert_(np.isfinite(stats.rice.expect(lambda x: 3, args=(0.74,))))
示例12: test_i0_series
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import i0 [as 別名]
def test_i0_series(self):
for z in [1., 10., 200.5]:
value, err = self.iv_series(0, z)
assert_allclose(special.i0(z), value, atol=err, err_msg=z)
示例13: test_i0
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import i0 [as 別名]
def test_i0(self):
values = [[0.0, 1.0],
[1e-10, 1.0],
[0.1, 0.9071009258],
[0.5, 0.6450352706],
[1.0, 0.4657596077],
[2.5, 0.2700464416],
[5.0, 0.1835408126],
[20.0, 0.0897803119],
]
for i, (x, v) in enumerate(values):
cv = special.i0(x) * exp(-x)
assert_almost_equal(cv, v, 8, err_msg='test #%d' % i)
示例14: i0
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import i0 [as 別名]
def i0(*args, **kwargs):
from scipy.special import i0
return i0(*args, **kwargs)
示例15: erf
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import i0 [as 別名]
def erf(*args, **kwargs):
from scipy.special import erf
return erf(*args, **kwargs)
# from scipy.special import lambertw, ellipe, gammaincc, gamma # fluids
# from scipy.special import i1, i0, k1, k0, iv # ht
# from scipy.special import hyp2f1
# if erf is None:
# from scipy.special import erf