本文整理匯總了Python中scipy.special.gammaincc方法的典型用法代碼示例。如果您正苦於以下問題:Python special.gammaincc方法的具體用法?Python special.gammaincc怎麽用?Python special.gammaincc使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.special
的用法示例。
在下文中一共展示了special.gammaincc方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: longestrunones8
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammaincc [as 別名]
def longestrunones8(binin):
''' The focus of the test is the longest run of ones within M-bit blocks. The purpose of this test is to determine whether the length of the longest run of ones within the tested sequence is consistent with the length of the longest run of ones that would be expected in a random sequence. Note that an irregularity in the expected length of the longest run of ones implies that there is also an irregularity in the expected length of the longest run of zeroes. Long runs of zeroes were not evaluated separately due to a concern about statistical independence among the tests.'''
m = 8
k = 3
pik = [0.2148, 0.3672, 0.2305, 0.1875]
blocks = [binin[xs*m:m+xs*m:] for xs in range(len(binin) / m)]
n = len(blocks)
# append the string 01 to guarantee the length of 1
counts1 = [xs+'01' for xs in blocks]
counts = [xs.replace('0', ' ').split()
for xs in counts1] # split into all parts
counts2 = [list(map(len, xx)) for xx in counts]
counts4 = [(4 if xx > 4 else xx) for xx in map(max, counts2)]
freqs = [counts4.count(spi) for spi in [1, 2, 3, 4]]
chisqr1 = [(freqs[xx]-n*pik[xx])**2/(n*pik[xx]) for xx in range(4)]
chisqr = reduce(su, chisqr1)
pval = spc.gammaincc(k / 2.0, chisqr / 2.0)
return pval
示例2: longestrunones128
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammaincc [as 別名]
def longestrunones128(binin): # not well tested yet
if len(binin) > 128:
m = 128
k = 5
n = len(binin)
pik = [0.1174, 0.2430, 0.2493, 0.1752, 0.1027, 0.1124]
blocks = [binin[xs * m:m + xs * m:] for xs in range(len(binin) / m)]
n = len(blocks)
counts = [xs.replace('0', ' ').split() for xs in blocks]
counts2 = [list(map(len, xx)) for xx in counts]
counts3 = [(1 if xx < 1 else xx) for xx in map(max, counts2)]
counts4 = [(4 if xx > 4 else xx) for xx in counts3]
chisqr1 = [(counts4[xx] - n * pik[xx]) ** 2 / (n * pik[xx])
for xx in range(len(counts4))]
chisqr = reduce(su, chisqr1)
pval = spc.gammaincc(k / 2.0, chisqr / 2.0)
else:
print('longestrunones128 failed, too few bits:', len(binin))
pval = 0
return pval
示例3: longestrunones10000
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammaincc [as 別名]
def longestrunones10000(binin): # not well tested yet
''' The focus of the test is the longest run of ones within M-bit blocks. The purpose of this test is to determine whether the length of the longest run of ones within the tested sequence is consistent with the length of the longest run of ones that would be expected in a random sequence. Note that an irregularity in the expected length of the longest run of ones implies that there is also an irregularity in the expected length of the longest run of zeroes. Long runs of zeroes were not evaluated separately due to a concern about statistical independence among the tests.'''
if len(binin) > 128:
m = 10000
k = 6
pik = [0.0882, 0.2092, 0.2483, 0.1933, 0.1208, 0.0675, 0.0727]
blocks = [binin[xs * m:m + xs * m:]
for xs in range(floor(len(binin) / m))]
n = len(blocks)
counts = [xs.replace('0', ' ').split() for xs in blocks]
counts2 = [list(map(len, xx)) for xx in counts]
counts3 = [(10 if xx < 10 else xx) for xx in map(max, counts2)]
counts4 = [(16 if xx > 16 else xx) for xx in counts3]
freqs = [counts4.count(spi) for spi in [10, 11, 12, 13, 14, 15, 16]]
chisqr1 = [(freqs[xx] - n * pik[xx]) ** 2 / (n * pik[xx])
for xx in range(len(freqs))]
chisqr = reduce(su, chisqr1)
pval = spc.gammaincc(k / 2.0, chisqr / 2.0)
else:
print('longestrunones10000 failed, too few bits:', len(binin))
pval = 0
return pval
# test 2.06
示例4: randomexcursionstest
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammaincc [as 別名]
def randomexcursionstest(binin):
''' The focus of this test is the number of cycles having exactly K visits in a cumulative sum random walk. The cumulative sum random walk is found if partial sums of the (0,1) sequence are adjusted to (-1, +1). A random excursion of a random walk consists of a sequence of n steps of unit length taken at random that begin at and return to the origin. The purpose of this test is to determine if the number of visits to a state within a random walk exceeds what one would expect for a random sequence.'''
xvals = [-4, -3, -2, -1, 1, 2, 3, 4]
ss = [int(el) for el in binin]
sc = list(map(sumi, ss))
cumsum = np.cumsum(sc)
cumsum = np.append(cumsum, 0)
cumsum = np.append(0, cumsum)
posi = np.where(cumsum == 0)[0]
cycles = ([cumsum[posi[x]:posi[x+1]+1] for x in range(len(posi)-1)])
j = len(cycles)
sct = []
for ii in cycles:
sct.append(([len(np.where(ii == xx)[0]) for xx in xvals]))
sct = np.transpose(np.clip(sct, 0, 5))
su = []
for ii in range(6):
su.append([(xx == ii).sum() for xx in sct])
su = np.transpose(su)
pikt = ([([pik(uu, xx) for uu in range(6)]) for xx in xvals])
# chitab=1.0*((su-j*pikt)**2)/(j*pikt)
chitab = np.sum(1.0*(np.array(su)-j*np.array(pikt))
** 2/(j*np.array(pikt)), axis=1)
pval = ([spc.gammaincc(2.5, cs/2.0) for cs in chitab])
return pval
示例5: inc_gamma
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammaincc [as 別名]
def inc_gamma(s, x):
r"""The (upper) incomplete gamma function.
Given by: :math:`\Gamma(s,x) = \int_x^{\infty} t^{s-1}\,e^{-t}\,{\rm d}t`
Parameters
----------
s : :class:`float`
exponent in the integral
x : :class:`numpy.ndarray`
input values
"""
if np.isclose(s, 0):
return sps.exp1(x)
if np.isclose(s, np.around(s)) and s < -0.5:
return x ** (s - 1) * sps.expn(int(1 - np.around(s)), x)
if s < 0:
return (inc_gamma(s + 1, x) - x ** s * np.exp(-x)) / s
return sps.gamma(s) * sps.gammaincc(s, x)
示例6: _sf
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammaincc [as 別名]
def _sf(self, x, a):
return sc.gammaincc(a, x)
示例7: _cdf
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammaincc [as 別名]
def _cdf(self, x, a, c):
xc = x**c
val1 = sc.gammainc(a, xc)
val2 = sc.gammaincc(a, xc)
return np.where(c > 0, val1, val2)
示例8: complete_gamma
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammaincc [as 別名]
def complete_gamma(a, z):
"""
return 'complete' gamma function
"""
return exp1(z) if a == 0 else gamma(a)*gammaincc(a, z)
示例9: test_gammaincc
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammaincc [as 別名]
def test_gammaincc(self):
assert_equal(cephes.gammaincc(5,0),1.0)
示例10: test_gammainccnan
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammaincc [as 別名]
def test_gammainccnan(self):
gama = special.gammaincc(-1,1)
assert_(isnan(gama))
示例11: test_pdtrik
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammaincc [as 別名]
def test_pdtrik(self):
k = cephes.pdtrik(0.5, 1)
assert_almost_equal(cephes.gammaincc(k + 1, 1), 0.5)
# Edge case: m = 0 or very small.
k = cephes.pdtrik([[0], [0.25], [0.95]], [0, 1e-20, 1e-6])
assert_array_equal(k, np.zeros((3, 3)))
示例12: test_gammainccinf
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammaincc [as 別名]
def test_gammainccinf(self):
gama = special.gammaincc(0.5,np.inf)
assert_equal(gama,0.0)
示例13: test_gammaincc
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammaincc [as 別名]
def test_gammaincc(self):
# Larger arguments are tested in test_data.py:test_local
assert_mpmath_equal(sc.gammaincc,
lambda z, a: mpmath.gammainc(z, a=a, regularized=True),
[Arg(0, 1e4, inclusive_a=False), Arg(0, 1e4)],
nan_ok=False, rtol=1e-11)
示例14: blockfrequencytest
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammaincc [as 別名]
def blockfrequencytest(binin, nu=20):
''' The focus of the test is the proportion of zeroes and ones within M-bit blocks. The purpose of this test is to determine whether the frequency of ones is an M-bit block is approximately M/2.'''
ss = [int(el) for el in binin]
tt = [1.0 * sum(ss[xs * nu:nu + xs * nu:]) /
nu for xs in range(floor(len(ss) / nu))]
uu = list(map(sus, tt))
chisqr = 4 * nu * reduce(su, uu, 0)
pval = spc.gammaincc(len(tt) / 2.0, chisqr / 2.0)
return pval
示例15: nonoverlappingtemplatematchingtest
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammaincc [as 別名]
def nonoverlappingtemplatematchingtest(binin, mat="000000001", num=9):
''' The focus of this test is the number of occurrences of pre-defined target substrings. The purpose of this test is to reject sequences that exhibit too many occurrences of a given non-periodic (aperiodic) pattern. For this test and for the Overlapping Template Matching test, an m-bit window is used to search for a specific m-bit pattern. If the pattern is not found, the window slides one bit position. For this test, when the pattern is found, the window is reset to the bit after the found pattern, and the search resumes.'''
n = len(binin)
m = len(mat)
M = floor(n/num)
blocks = [binin[xs*M:M+xs*M:] for xs in range(floor(n/M))]
counts = [xx.count(mat) for xx in blocks]
avg = 1.0 * (M-m+1)/2 ** m
var = M*(2**-m - (2*m-1)*2**(-2*m))
chisqr = reduce(su, [(xs - avg) ** 2 for xs in counts]) / var
pval = spc.gammaincc(1.0 * len(blocks) / 2, chisqr / 2)
return pval