本文整理匯總了Python中scipy.special.gammainc方法的典型用法代碼示例。如果您正苦於以下問題:Python special.gammainc方法的具體用法?Python special.gammainc怎麽用?Python special.gammainc使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.special
的用法示例。
在下文中一共展示了special.gammainc方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_digamma_boundary
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammainc [as 別名]
def test_digamma_boundary():
# Check that there isn't a jump in accuracy when we switch from
# using the asymptotic series to the reflection formula.
x = -np.logspace(300, -30, 100)
y = np.array([-6.1, -5.9, 5.9, 6.1])
x, y = np.meshgrid(x, y)
z = (x + 1j*y).flatten()
dataset = []
with mpmath.workdps(30):
for z0 in z:
res = mpmath.digamma(z0)
dataset.append((z0, complex(res)))
dataset = np.asarray(dataset)
FuncData(sc.digamma, dataset, 0, 1, rtol=1e-13).check()
# ------------------------------------------------------------------------------
# gammainc
# ------------------------------------------------------------------------------
示例2: _upper_incomplete_gamma
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammainc [as 別名]
def _upper_incomplete_gamma(z, a):
"""
An implementation of the non-regularised upper incomplete gamma
function. Computed using the relationship with the regularised
lower incomplete gamma function (scipy.special.gammainc).
Uses the recurrence relation wherever z<0.
"""
n = int(-np.floor(z))
if n > 0:
z = z + n
u_gamma = (1. - gammainc(z, a))*gamma(z)
for i in range(n):
z = z - 1.
u_gamma = (u_gamma - np.power(a, z)*np.exp(-a))/z
return u_gamma
else:
return (1. - gammainc(z, a))*gamma(z)
示例3: mean
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammainc [as 別名]
def mean(t, a, b):
# TODO this is not tested yet.
# tests:
# cemean(0., a, b)==mean(a, b, p)
# mean(t, a, 1., p)==mean(0., a, 1., p) == a
# conditional excess mean
# E[Y|y>t]
# (conditional mean age at failure)
# http://reliabilityanalyticstoolkit.appspot.com/conditional_distribution
from scipy.special import gamma
from scipy.special import gammainc
# Regularized lower gamma
print('not tested')
v = 1. + 1. / b
gv = gamma(v)
L = np.power((t + .0) / a, b)
cemean = a * gv * np.exp(L) * (1 - gammainc(v, t / a) / gv)
return cemean
示例4: test_line
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammainc [as 別名]
def test_line():
# Test on the line a = x where a simpler asymptotic expansion
# (analog of DLMF 8.12.15) is available.
def gammainc_line(x):
c = np.array([-1/3, -1/540, 25/6048, 101/155520,
-3184811/3695155200, -2745493/8151736420])
res = 0
xfac = 1
for ck in c:
res -= ck*xfac
xfac /= x
res /= np.sqrt(2*np.pi*x)
res += 0.5
return res
x = np.logspace(np.log10(25), 300, 500)
a = x.copy()
dataset = np.vstack((a, x, gammainc_line(x))).T
FuncData(sc.gammainc, dataset, (0, 1), 2, rtol=1e-11).check()
示例5: alpha_abs
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammainc [as 別名]
def alpha_abs(self, x, y, n_sersic, r_eff, k_eff, center_x=0, center_y=0):
"""
:param x:
:param y:
:param n_sersic:
:param r_eff:
:param k_eff:
:param center_x:
:param center_y:
:return:
"""
n = n_sersic
x_red = self._x_reduced(x, y, n_sersic, r_eff, center_x, center_y)
b = self.b_n(n_sersic)
a_eff = self._alpha_eff(r_eff, n_sersic, k_eff)
alpha = 2. * a_eff * x_red ** (-n) * (special.gammainc(2 * n, b * x_red))
return alpha
示例6: _cdf
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammainc [as 別名]
def _cdf(self, x, df):
return sc.gammainc(.5*df, .5*x**2)
示例7: _sf
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammainc [as 別名]
def _sf(self, x, a):
fac = 0.5*sc.gammainc(a, abs(x))
return np.where(x > 0, 0.5-fac, 0.5+fac)
示例8: test_gammainc
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammainc [as 別名]
def test_gammainc(self):
assert_equal(cephes.gammainc(5,0),0.0)
示例9: test_gammaincnan
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammainc [as 別名]
def test_gammaincnan(self):
gama = special.gammainc(-1,1)
assert_(isnan(gama))
示例10: test_gammainczero
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammainc [as 別名]
def test_gammainczero(self):
# bad arg but zero integration limit
gama = special.gammainc(-1,0)
assert_equal(gama,0.0)
示例11: test_gammaincc
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammainc [as 別名]
def test_gammaincc(self):
gicc = special.gammaincc(.5,.5)
greal = 1 - special.gammainc(.5,.5)
assert_almost_equal(gicc,greal,8)
示例12: test_975
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammainc [as 別名]
def test_975(self):
# Regression test for ticket #975 -- switch point in algorithm
# check that things work OK at the point, immediately next floats
# around it, and a bit further away
pts = [0.25,
np.nextafter(0.25, 0), 0.25 - 1e-12,
np.nextafter(0.25, 1), 0.25 + 1e-12]
for xp in pts:
y = special.gammaincinv(.4, xp)
x = special.gammainc(0.4, y)
assert_tol_equal(x, xp, rtol=1e-12)
示例13: test_gammainc
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammainc [as 別名]
def test_gammainc(self):
assert_mpmath_equal(sc.gammainc,
_exception_to_nan(
lambda z, b: mpmath.gammainc(z, b=b)/mpmath.gamma(z)),
[Arg(a=0), Arg(a=0)])
示例14: kappa_func
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import gammainc [as 別名]
def kappa_func(kappa, n):
"""
Function for getting Sersic kappa
"""
from scipy.special import gamma, gammainc
f = gamma(2*n)-2*gammainc(2*n, kappa)*gamma(2*n)
return f