當前位置: 首頁>>代碼示例>>Python>>正文


Python special.expit方法代碼示例

本文整理匯總了Python中scipy.special.expit方法的典型用法代碼示例。如果您正苦於以下問題:Python special.expit方法的具體用法?Python special.expit怎麽用?Python special.expit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.special的用法示例。


在下文中一共展示了special.expit方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: Ey

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import expit [as 別名]
def Ey(self, f):
        r"""
        Expected value of the Bernoulli likelihood.

        Parameters
        ----------
        f: ndarray
            latent function from the GLM prior (:math:`\mathbf{f} =
            \boldsymbol\Phi \mathbf{w}`)

        Returns
        -------
        Ey: ndarray
            expected value of y, :math:`\mathbb{E}[\mathbf{y}|\mathbf{f}]`.
        """
        return expit(f) 
開發者ID:NICTA,項目名稱:revrand,代碼行數:18,代碼來源:likelihoods.py

示例2: df

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import expit [as 別名]
def df(self, y, f):
        r"""
        Derivative of Bernoulli log likelihood w.r.t.\  f.

        Parameters
        ----------
        y: ndarray
            array of 0, 1 valued integers of targets
        f: ndarray
            latent function from the GLM prior (:math:`\mathbf{f} =
            \boldsymbol\Phi \mathbf{w}`)

        Returns
        -------
        df: ndarray
            the derivative :math:`\partial \log p(y|f) / \partial f`
        """
        y, f = np.broadcast_arrays(y, f)
        return y - expit(f) 
開發者ID:NICTA,項目名稱:revrand,代碼行數:21,代碼來源:likelihoods.py

示例3: cdf

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import expit [as 別名]
def cdf(self, y, f):
        r"""
        Cumulative density function of the likelihood.

        Parameters
        ----------
        y: ndarray
            query quantiles, i.e.\  :math:`P(Y \leq y)`.
        f: ndarray
            latent function from the GLM prior (:math:`\mathbf{f} =
            \boldsymbol\Phi \mathbf{w}`)

        Returns
        -------
        cdf: ndarray
            Cumulative density function evaluated at y.
        """
        return bernoulli.cdf(y, expit(f)) 
開發者ID:NICTA,項目名稱:revrand,代碼行數:20,代碼來源:likelihoods.py

示例4: loglike

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import expit [as 別名]
def loglike(self, y, f, n):
        r"""
        Binomial log likelihood.

        Parameters
        ----------
        y: ndarray
            array of 0, 1 valued integers of targets
        f: ndarray
            latent function from the GLM prior (:math:`\mathbf{f} =
            \boldsymbol\Phi \mathbf{w}`)
        n: ndarray
            the total number of observations

        Returns
        -------
        logp: ndarray
            the log likelihood of each y given each f under this
            likelihood.
        """
        ll = binom.logpmf(y, n=n, p=expit(f))
        return ll 
開發者ID:NICTA,項目名稱:revrand,代碼行數:24,代碼來源:likelihoods.py

示例5: transform

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import expit [as 別名]
def transform(self, X, lenscale=None):
        r"""
        Apply the sigmoid basis function to X.

        Parameters
        ----------
        X: ndarray
            (N, d) array of observations where N is the number of samples, and
            d is the dimensionality of X.
        lenscale: float
            the length scale (scalar) of the RBFs to apply to X. If not input,
            this uses the value of the initial length scale.

        Returns
        -------
        ndarray:
            of shape (N, D) where D is number of centres.
        """
        N, d = X.shape
        lenscale = self._check_dim(d, lenscale)

        return expit(cdist(X / lenscale, self.C / lenscale, 'euclidean')) 
開發者ID:NICTA,項目名稱:revrand,代碼行數:24,代碼來源:basis_functions.py

示例6: logistic_regression_cost_gradient

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import expit [as 別名]
def logistic_regression_cost_gradient(parameters, input, output):
    """
    Cost and gradient for logistic regression
    :param parameters: weight vector
    :param input: feature vector
    :param output: binary label (0 or 1)
    :return: cost and gradient for the input and output
    """
    prediction = expit(np.dot(input, parameters))
    if output:
        inside_log = prediction
    else:
        inside_log = 1.0 - prediction

    if inside_log != 0.0:
        cost = -np.log(inside_log)
    else:
        cost = np.finfo(float).min

    gradient = (prediction - output) * input
    return cost, gradient 
開發者ID:yohokuno,項目名稱:dl4nlp,代碼行數:23,代碼來源:logistic_regression.py

示例7: assertLogisticRegression

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import expit [as 別名]
def assertLogisticRegression(self, sampler):
        data_size = 3
        input_size = 5
        inputs = np.random.uniform(-10.0, 10.0, size=(data_size, input_size))
        outputs = np.random.randint(0, 2, size=data_size)
        initial_parameters = np.random.normal(scale=1e-5, size=input_size)

        # Create cost and gradient function for gradient descent and check its gradient
        cost_gradient = bind_cost_gradient(logistic_regression_cost_gradient,
                                           inputs, outputs, sampler=sampler)
        result = gradient_check(cost_gradient, initial_parameters)
        self.assertEqual([], result)

        # Train logistic regression and see if it predicts correct labels
        final_parameters, cost_history = gradient_descent(cost_gradient, initial_parameters, 100)
        predictions = expit(np.dot(inputs, final_parameters)) > 0.5

        # Binary classification of 3 data points with 5 dimension is always linearly separable
        for output, prediction in zip(outputs, predictions):
            self.assertEqual(output, prediction) 
開發者ID:yohokuno,項目名稱:dl4nlp,代碼行數:22,代碼來源:test_logistic_regression.py

示例8: predict

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import expit [as 別名]
def predict(model, docs, dtype='real'):
	normalized = docs/docs.sum(axis=-1)[:,np.newaxis]
	normalized_bow = torch.tensor(normalized, dtype=torch.float)
	num_documents = docs.shape[0]

	treatment_ones = torch.ones(num_documents) 
	treatment_zeros = torch.zeros(num_documents) 

	model.eval()
	with torch.no_grad():
		doc_representation,_ = model.get_theta(normalized_bow)
		propensity_score = model.predict_treatment(doc_representation).squeeze().detach().numpy()
		propensity_score = expit(propensity_score)
		expected_outcome_treat = model.predict_outcome_st_treat(doc_representation, treatment_ones).squeeze().detach().numpy()
		expected_outcome_no_treat = model.predict_outcome_st_no_treat(doc_representation, treatment_zeros).squeeze().detach().numpy()

		if dtype == 'binary':
			expected_outcome_treat = expit(expected_outcome_treat)
			expected_outcome_no_treat = expit(expected_outcome_no_treat)
		
		return propensity_score, expected_outcome_treat, expected_outcome_no_treat 
開發者ID:blei-lab,項目名稱:causal-text-embeddings,代碼行數:23,代碼來源:run_supervised_tm.py

示例9: _perturbed_model

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import expit [as 別名]
def _perturbed_model(q_t0, q_t1, g, t, q, eps):
    # helper function for psi_tmle

    h1 = t / q - ((1 - t) * g) / (q * (1 - g))
    full_q = (1.0 - t) * q_t0 + t * q_t1
    perturbed_q = full_q - eps * h1

    def q1(t_cf, epsilon):
        h_cf = t_cf * (1.0 / g) - (1.0 - t_cf) / (1.0 - g)
        full_q = (1.0 - t_cf) * q_t0 + t_cf * q_t1  # predictions from unperturbed model
        return full_q - epsilon * h_cf

    psi_init = np.mean(t * (q1(np.ones_like(t), eps) - q1(np.zeros_like(t), eps))) / q
    h2 = (q_t1 - q_t0 - psi_init) / q
    perturbed_g = expit(logit(g) - eps * h2)

    return perturbed_q, perturbed_g 
開發者ID:blei-lab,項目名稱:causal-text-embeddings,代碼行數:19,代碼來源:att.py

示例10: test_probability_exponential

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import expit [as 別名]
def test_probability_exponential():
    # Predict probabilities.
    clf = GradientBoostingClassifier(loss='exponential',
                                     n_estimators=100, random_state=1)

    assert_raises(ValueError, clf.predict_proba, T)

    clf.fit(X, y)
    assert_array_equal(clf.predict(T), true_result)

    # check if probabilities are in [0, 1].
    y_proba = clf.predict_proba(T)
    assert np.all(y_proba >= 0.0)
    assert np.all(y_proba <= 1.0)
    score = clf.decision_function(T).ravel()
    assert_array_almost_equal(y_proba[:, 1], expit(2 * score))

    # derive predictions from probabilities
    y_pred = clf.classes_.take(y_proba.argmax(axis=1), axis=0)
    assert_array_equal(y_pred, true_result) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:22,代碼來源:test_gradient_boosting.py

示例11: predict_proba

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import expit [as 別名]
def predict_proba(self, X):
        """Estimate probability.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Input data.

        Returns
        -------
        C : array, shape (n_samples, n_classes)
            Estimated probabilities.
        """
        check_is_fitted(self, 'classes_')

        decision = self.decision_function(X)
        if self.classes_.size == 2:
            proba = expit(decision)
            return np.vstack([1-proba, proba]).T
        else:
            return softmax(decision) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:23,代碼來源:discriminant_analysis.py

示例12: to_prob

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import expit [as 別名]
def to_prob(probabilities: np.ndarray):
    """
    If the probabilities array is not a distrubution will softmax it.

    Args:
        probabilities (array): [batch_size, num_classes, ...]

    Returns:
        Same as probabilities.
    """
    not_bounded = np.min(probabilities) < 0 or np.max(probabilities) > 1.0
    multiclass = probabilities.shape[1] > 1
    sum_to_one = np.allclose(probabilities.sum(1), 1)
    if not_bounded or (multiclass and not sum_to_one):
        if multiclass:
            probabilities = softmax(probabilities, 1)
        else:
            probabilities = expit(probabilities)
    return probabilities 
開發者ID:ElementAI,項目名稱:baal,代碼行數:21,代碼來源:array_utils.py

示例13: _mu

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import expit [as 別名]
def _mu(distr, z, eta, fit_intercept):
    """The non-linearity (inverse link)."""
    if distr in ['softplus', 'gamma']:
        mu = np.log1p(np.exp(z))
    elif distr == 'poisson':
        mu = z.copy()
        beta0 = (1 - eta) * np.exp(eta) if fit_intercept else 0.
        mu[z > eta] = z[z > eta] * np.exp(eta) + beta0
        mu[z <= eta] = np.exp(z[z <= eta])
    elif distr == 'gaussian':
        mu = z
    elif distr == 'binomial':
        mu = expit(z)
    elif distr == 'probit':
        mu = norm.cdf(z)
    return mu 
開發者ID:glm-tools,項目名稱:pyglmnet,代碼行數:18,代碼來源:pyglmnet.py

示例14: update_dag_logits

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import expit [as 別名]
def update_dag_logits(self, gradient_dicts, weight_decay, max_grad=0.1):
        """
        Updates the probabilities of each path being selected using the given gradients.
        """
        dag_probs = tuple(expit(logit) for logit in self.dags_logits)
        current_average_dag_probs = tuple(np.mean(prob) for prob in dag_probs)

        for i, key in enumerate(self.all_connections):
            for grad_dict, current_average_dag_prob, dag_logits in zip(gradient_dicts, current_average_dag_probs,
                                                                       self.dags_logits):
                if key in grad_dict:
                    grad = grad_dict[key] - weight_decay * (
                            current_average_dag_prob - self.target_ave_prob)  # *expit(dag_logits[i])
                    deriv = sigmoid_derivitive(dag_logits[i])
                    logit_grad = grad * deriv
                    dag_logits[i] += np.clip(logit_grad, -max_grad, max_grad) 
開發者ID:kcyu2014,項目名稱:eval-nas,代碼行數:18,代碼來源:shared_cnn.py

示例15: count

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import expit [as 別名]
def count(self, x):
        if self.quasi:
            return np.round(expit(x).sum())
        else:
            return x.sum() 
開發者ID:vacancy,項目名稱:NSCL-PyTorch-Release,代碼行數:7,代碼來源:program_executor.py


注:本文中的scipy.special.expit方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。