本文整理匯總了Python中scipy.special.erfinv方法的典型用法代碼示例。如果您正苦於以下問題:Python special.erfinv方法的具體用法?Python special.erfinv怎麽用?Python special.erfinv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.special
的用法示例。
在下文中一共展示了special.erfinv方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: std_iqr
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfinv [as 別名]
def std_iqr(x):
"""Robust estimation of the standard deviation, based on the inter-quartile
(IQR) distance of x.
This computes the IQR of x, and applies the Gaussian distribution
correction, making it a consistent estimator of the standard-deviation
(when the sample looks Gaussian with outliers).
Parameters
----------
x : `np.ndarray`
Input vector
Returns
-------
output : `float`
A robust estimation of the standard deviation
"""
from scipy.stats import iqr
from scipy.special import erfinv
correction = 2 ** 0.5 * erfinv(0.5)
return correction * iqr(x)
示例2: _using_cdf
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfinv [as 別名]
def _using_cdf(self, x, exp):
# Get the value of the cumulative probability function, instead of the survival function (1 - cdf),
# because for extreme values sf(x) = 1 - cdf(x) = 1 due to numerical precision problems
cdf = scipy.stats.poisson.cdf(x, exp)
# print(cdf)
out = np.zeros_like(x)
idx = cdf >= 2 * self._epsilon
# We can do a direct computation, because the numerical precision is sufficient
# for this computation, as -sf = cdf - 1 is a representable number
out[idx] = erfinv(2 * cdf[idx] - 1) * sqrt(2)
# We use a lookup table with interpolation because the numerical precision would not
# be sufficient to make the computation
out[~idx] = -1 * self._interpolator(np.log10(cdf[~idx]))
return out
示例3: date_uncertainty_due_to_rate
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfinv [as 別名]
def date_uncertainty_due_to_rate(self, node, interval=(0.05, 0.095)):
"""use previously calculated variation of the rate to estimate
the uncertainty in a particular numdate due to rate variation.
Parameters
----------
node : PhyloTree.Clade
node for which the confidence interval is to be calculated
interval : tuple, optional
Array of length two, or tuple, defining the bounds of the confidence interval
"""
if hasattr(node, "numdate_rate_variation"):
from scipy.special import erfinv
nsig = [np.sqrt(2.0)*erfinv(-1.0 + 2.0*x) if x*(1.0-x) else 0
for x in interval]
l,c,u = [x[1] for x in node.numdate_rate_variation]
return np.array([c + x*np.abs(y-c) for x,y in zip(nsig, (l,u))])
else:
return None
示例4: test_erfinv
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfinv [as 別名]
def test_erfinv() -> None:
try:
from scipy.special import erfinv as scipy_erfinv
except:
pytest.skip("scipy not installed skipping test for erf")
x = np.linspace(-1.0 + 1.0e-4, 1 - 1.0e-4, 11)
y_scipy = scipy_erfinv(x)
# Test mx.nd
y_mxnet = util.erfinv(mx.nd, mx.nd.array(x)).asnumpy()
assert np.allclose(y_mxnet, y_scipy, rtol=1e-3)
# Test mx.sym
X = mx.symbol.Variable("x")
func = util.erfinv(mx.sym, X)
func_exec = func.bind(ctx=mx.cpu(), args={"x": mx.nd.array(x)})
func_exec.forward()
y_mxnet_sym = func_exec.outputs[0].asnumpy()
assert np.allclose(y_mxnet_sym, y_scipy, rtol=1e-3)
# Text np
y_np = util.erfinv(np, x)
assert np.allclose(y_np, y_scipy, rtol=1e-3)
示例5: _rescale
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfinv [as 別名]
def _rescale(self, samp, **kwargs):
try:
mode = kwargs['mode']
except KeyError:
mode = None
if mode is None:
if self.nmodes == 1:
mode = 0
else:
mode = np.argwhere(self.cumweights - np.random.rand() > 0)[0][0]
samp = erfinv(2. * samp - 1) * 2. ** 0.5
# rotate and scale to the multivariate normal shape
samp = self.mus[mode] + self.sigmas[mode] * np.einsum('ij,kj->ik',
samp * self.sqeigvalues[mode],
self.eigvectors[mode])
return samp
示例6: _function
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfinv [as 別名]
def _function(self,
variable=None,
context=None,
params=None,
):
try:
from scipy.special import erfinv
except:
raise FunctionError("The UniformToNormalDist function requires the SciPy package.")
mean = self._get_current_function_param(DIST_MEAN, context)
standard_deviation = self._get_current_function_param(STANDARD_DEVIATION, context)
random_state = self._get_current_function_param('random_state', context)
sample = random_state.rand(1)[0]
result = ((np.sqrt(2) * erfinv(2 * sample - 1)) * standard_deviation) + mean
return self.convert_output_type(result)
示例7: test_erfinv
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfinv [as 別名]
def test_erfinv(self):
i = special.erfinv(0)
assert_equal(i,0)
示例8: xi_hat
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfinv [as 別名]
def xi_hat(self, xi_bar_hat):
"""
A priori SNR estimate.
Argument/s:
xi_bar_hat - mapped a priori SNR estimate.
Returns:
A priori SNR estimate.
"""
xi_db_hat = np.add(np.multiply(np.multiply(self.sigma, np.sqrt(2.0)),
spsp.erfinv(np.subtract(np.multiply(2.0, xi_bar_hat), 1))), self.mu)
return np.power(10.0, np.divide(xi_db_hat, 10.0))
示例9: _erfinv_cpu
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfinv [as 別名]
def _erfinv_cpu(x, dtype):
from scipy import special
return numpy.vectorize(special.erfinv, otypes=[dtype])(x)
示例10: label
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfinv [as 別名]
def label(self):
return 'erfinv'
示例11: forward_cpu
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfinv [as 別名]
def forward_cpu(self, x):
if not available_cpu:
raise ImportError('SciPy is not available. Forward computation'
' of erfinv in CPU cannot be done. ' +
str(_import_error))
self.retain_outputs((0,))
return utils.force_array(special.erfinv(x[0]), dtype=x[0].dtype),
示例12: forward_gpu
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfinv [as 別名]
def forward_gpu(self, x):
self.retain_outputs((0,))
return cuda.elementwise(
'T x', 'T y',
'y = erfinv(x)',
'elementwise_erfinv',
)(x[0]),
示例13: erfinv
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfinv [as 別名]
def erfinv(x):
"""Elementwise inverse function of error function.
.. note::
Forward computation in CPU cannot be done if
`SciPy <https://www.scipy.org/>`_ is not available.
Args:
x (:class:`~chainer.Variable` or :ref:`ndarray`): Input variable.
Returns:
~chainer.Variable: Output variable.
"""
return ErfInv().apply((x,))[0]
示例14: _zinnharvey
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfinv [as 別名]
def _zinnharvey(field, conn="high", mean=None, var=None):
"""
Zinn and Harvey transformation to connect low or high values.
Parameters
----------
field : :class:`numpy.ndarray`
Spatial Random Field with normal distributed values.
As returned by SRF.
conn : :class:`str`, optional
Desired connectivity. Either "low" or "high".
Default: "high"
mean : :class:`float` or :any:`None`, optional
Mean of the given field. If None is given, the mean will be calculated.
Default: :any:`None`
var : :class:`float` or :any:`None`, optional
Variance of the given field.
If None is given, the mean will be calculated.
Default: :any:`None`
Returns
-------
:class:`numpy.ndarray`
Transformed field.
"""
if mean is None:
mean = np.mean(field)
if var is None:
var = np.var(field)
field = np.abs((field - mean) / np.sqrt(var))
field = 2 * erf(field / np.sqrt(2)) - 1
field = np.sqrt(2) * erfinv(field)
if conn == "high":
field = -field
return field * np.sqrt(var) + mean
示例15: spectral_rad_ppf
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfinv [as 別名]
def spectral_rad_ppf(self, u):
"""Radial spectral ppf.
Notes
-----
Not defined for 3D.
"""
u = np.array(u, dtype=np.double)
if self.dim == 1:
return sps.erfinv(u) * np.sqrt(np.pi) / self.len_scale
if self.dim == 2:
return np.sqrt(np.pi) / self.len_scale * np.sqrt(-np.log(1.0 - u))
return None