本文整理匯總了Python中scipy.special.erfc方法的典型用法代碼示例。如果您正苦於以下問題:Python special.erfc方法的具體用法?Python special.erfc怎麽用?Python special.erfc使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.special
的用法示例。
在下文中一共展示了special.erfc方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_erf_complex
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfc [as 別名]
def test_erf_complex():
# need to increase mpmath precision for this test
old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec
try:
mpmath.mp.dps = 70
x1, y1 = np.meshgrid(np.linspace(-10, 1, 31), np.linspace(-10, 1, 11))
x2, y2 = np.meshgrid(np.logspace(-80, .8, 31), np.logspace(-80, .8, 11))
points = np.r_[x1.ravel(),x2.ravel()] + 1j*np.r_[y1.ravel(),y2.ravel()]
assert_func_equal(sc.erf, lambda x: complex(mpmath.erf(x)), points,
vectorized=False, rtol=1e-13)
assert_func_equal(sc.erfc, lambda x: complex(mpmath.erfc(x)), points,
vectorized=False, rtol=1e-13)
finally:
mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec
#------------------------------------------------------------------------------
# lpmv
#------------------------------------------------------------------------------
示例2: test_erf_complex
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfc [as 別名]
def test_erf_complex():
# need to increase mpmath precision for this test
old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec
try:
mpmath.mp.dps = 70
x1, y1 = np.meshgrid(np.linspace(-10, 1, 31), np.linspace(-10, 1, 11))
x2, y2 = np.meshgrid(np.logspace(-80, .8, 31), np.logspace(-80, .8, 11))
points = np.r_[x1.ravel(),x2.ravel()] + 1j*np.r_[y1.ravel(), y2.ravel()]
assert_func_equal(sc.erf, lambda x: complex(mpmath.erf(x)), points,
vectorized=False, rtol=1e-13)
assert_func_equal(sc.erfc, lambda x: complex(mpmath.erfc(x)), points,
vectorized=False, rtol=1e-13)
finally:
mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec
# ------------------------------------------------------------------------------
# lpmv
# ------------------------------------------------------------------------------
示例3: lempelzivcompressiontest1
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfc [as 別名]
def lempelzivcompressiontest1(binin):
''' The focus of this test is the number of cumulatively distinct patterns (words) in the sequence. The purpose of the test is to determine how far the tested sequence can be compressed. The sequence is considered to be non-random if it can be significantly compressed. A random sequence will have a characteristic number of distinct patterns.'''
i = 1
j = 0
n = len(binin)
mu = 69586.25
sigma = 70.448718
words = []
while (i+j) <= n:
tmp = binin[i:i+j:]
if words.count(tmp) > 0:
j += 1
else:
words.append(tmp)
i += j+1
j = 0
wobs = len(words)
pval = 0.5*spc.erfc((mu-wobs)/np.sqrt(2.0*sigma))
return pval
# test 2.11
示例4: get_selu_parameters
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfc [as 別名]
def get_selu_parameters(fixed_point_mean=0.0, fixed_point_var=1.0):
""" Finding the parameters of the SELU activation function. The function returns alpha and lambda for the desired
fixed point. """
aa = Symbol('aa')
ll = Symbol('ll')
nu = fixed_point_mean
tau = fixed_point_var
mean = 0.5 * ll * (nu + np.exp(-nu ** 2 / (2 * tau)) * np.sqrt(2 / np.pi) * np.sqrt(tau) +
nu * erf(nu / (np.sqrt(2 * tau))) - aa * erfc(nu / (np.sqrt(2 * tau))) +
np.exp(nu + tau / 2) * aa * erfc((nu + tau) / (np.sqrt(2 * tau))))
var = 0.5 * ll ** 2 * (np.exp(-nu ** 2 / (2 * tau)) * np.sqrt(2 / np.pi * tau) * nu + (nu ** 2 + tau) *
(1 + erf(nu / (np.sqrt(2 * tau)))) + aa ** 2 * erfc(nu / (np.sqrt(2 * tau))) -
aa ** 2 * 2 * np.exp(nu + tau / 2) * erfc((nu + tau) / (np.sqrt(2 * tau))) +
aa ** 2 * np.exp(2 * (nu + tau)) * erfc((nu + 2 * tau) / (np.sqrt(2 * tau)))) - mean ** 2
eq1 = mean - nu
eq2 = var - tau
res = nsolve((eq2, eq1), (aa, ll), (1.67, 1.05))
return float(res[0]), float(res[1])
示例5: _log_erfc
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfc [as 別名]
def _log_erfc(x):
"""Compute log(erfc(x)) with high accuracy for large x."""
try:
return math.log(2) + special.log_ndtr(-x * 2**.5)
except NameError:
# If log_ndtr is not available, approximate as follows:
r = special.erfc(x)
if r == 0.0:
# Using the Laurent series at infinity for the tail of the erfc function:
# erfc(x) ~ exp(-x^2-.5/x^2+.625/x^4)/(x*pi^.5)
# To verify in Mathematica:
# Series[Log[Erfc[x]] + Log[x] + Log[Pi]/2 + x^2, {x, Infinity, 6}]
return (-math.log(math.pi) / 2 - math.log(x) - x**2 - .5 * x**-2 +
.625 * x**-4 - 37. / 24. * x**-6 + 353. / 64. * x**-8)
else:
return math.log(r)
示例6: get_quantiles
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfc [as 別名]
def get_quantiles(acquisition_par, fmin, m, s):
'''
Quantiles of the Gaussian distribution useful to determine the acquisition function values
:param acquisition_par: parameter of the acquisition function
:param fmin: current minimum.
:param m: vector of means.
:param s: vector of standard deviations.
'''
if isinstance(s, np.ndarray):
s[s<1e-10] = 1e-10
elif s< 1e-10:
s = 1e-10
u = (fmin - m - acquisition_par)/s
phi = np.exp(-0.5 * u**2) / np.sqrt(2*np.pi)
# vectorized version of erfc to not depend on scipy
Phi = 0.5 * erfc(-u / np.sqrt(2))
return (phi, Phi, u)
示例7: get_ewald_params
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfc [as 別名]
def get_ewald_params(cell, precision=INTEGRAL_PRECISION, mesh=None):
r'''Choose a reasonable value of Ewald 'eta' and 'cut' parameters.
eta^2 is the exponent coefficient of the model Gaussian charge for nucleus
at R: \frac{eta^3}{pi^1.5} e^{-eta^2 (r-R)^2}
Choice is based on largest G vector and desired relative precision.
The relative error in the G-space sum is given by
precision ~ 4\pi Gmax^2 e^{(-Gmax^2)/(4 \eta^2)}
which determines eta. Then, real-space cutoff is determined by (exp.
factors only)
precision ~ erfc(eta*rcut) / rcut ~ e^{(-eta**2 rcut*2)}
Returns:
ew_eta, ew_cut : float
The Ewald 'eta' and 'cut' parameters.
'''
if cell.natm == 0:
return 0, 0
elif (cell.dimension < 2 or
(cell.dimension == 2 and cell.low_dim_ft_type == 'inf_vacuum')):
# Non-uniform PW grids are used for low-dimensional ewald summation. The cutoff
# estimation for long range part based on exp(G^2/(4*eta^2)) does not work for
# non-uniform grids. Smooth model density is preferred.
ew_cut = cell.rcut
ew_eta = np.sqrt(max(np.log(4*np.pi*ew_cut**2/precision)/ew_cut**2, .1))
else:
if mesh is None:
mesh = cell.mesh
mesh = _cut_mesh_for_ewald(cell, mesh)
Gmax = min(np.asarray(mesh)//2 * lib.norm(cell.reciprocal_vectors(), axis=1))
log_precision = np.log(precision/(4*np.pi*(Gmax+1e-100)**2))
ew_eta = np.sqrt(-Gmax**2/(4*log_precision)) + 1e-100
ew_cut = _estimate_rcut(ew_eta**2, 0, 1., precision)
return ew_eta, ew_cut
示例8: ewald_ion
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfc [as 別名]
def ewald_ion(self):
r"""
Compute ion contribution to Ewald sums. Since the ions don't move in our calculations, the ion-ion term only needs to be computed once.
Note: We ignore the constant term :math:`\frac{1}{2} \sum_{I} Z_I^2 C_{\rm self\ image}` in the real-space ion-ion sum corresponding to the interaction of an ion with its own image in other cells.
The real-space part:
.. math:: E_{\rm real\ space}^{\text{ion-ion}} = \sum_{\vec{n}} \sum_{I<J}^{N_{ion}} Z_I Z_J \frac{{\rm erfc}(\alpha |\vec{x}_{IJ}+\vec{n}|)}{|\vec{x}_{IJ}+\vec{n}|}
The reciprocal-space part:
.. math:: E_{\rm reciprocal\ space}^{\text{ion-ion}} = \sum_{\vec{G} > 0 } W_G \left| \sum_{I=1}^{N_{ion}} Z_I e^{-i\vec{G}\cdot\vec{x}_I} \right|^2
Returns:
ion_ion: float, ion-ion component of Ewald sum
"""
# Real space part
if len(self.atom_charges) == 1:
ion_ion_real = 0
else:
dist = pyqmc.distance.MinimalImageDistance(self.latvec)
ion_distances, ion_inds = dist.dist_matrix(self.atom_coords[np.newaxis])
rvec = ion_distances[:, :, np.newaxis, :] + self.lattice_displacements
r = np.linalg.norm(rvec, axis=-1)
charge_ij = np.prod(self.atom_charges[np.asarray(ion_inds)], axis=1)
ion_ion_real = np.einsum("j,ijk->", charge_ij, erfc(self.alpha * r) / r)
# Reciprocal space part
GdotR = np.dot(self.gpoints, self.atom_coords.T)
self.ion_exp = np.dot(np.exp(1j * GdotR), self.atom_charges)
ion_ion_rec = np.dot(self.gweight, np.abs(self.ion_exp) ** 2)
ion_ion = ion_ion_real + ion_ion_rec
return ion_ion
示例9: _real_cij
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfc [as 別名]
def _real_cij(self, dists):
r = np.zeros(dists.shape[:-1])
cij = np.zeros(r.shape)
for ld in self.lattice_displacements:
r[:] = np.linalg.norm(dists + ld, axis=-1)
cij += erfc(self.alpha * r) / r
return cij
示例10: energy_with_test_pos
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfc [as 別名]
def energy_with_test_pos(self, configs, epos):
"""
Compute Coulomb energy of an additional test electron with a set of configs
Inputs:
configs: pyqmc PeriodicConfigs object of shape (nconf, nelec, ndim)
epos: pyqmc PeriodicConfigs object of shape (nconf, ndim)
Returns:
Vtest: (nconf, nelec+1) array. The first nelec columns are Coulomb energies between the test electron and each electron; the last column is the contribution from all the ions.
"""
nconf, nelec, ndim = configs.configs.shape
Vtest = np.zeros((nconf, nelec + 1)) + self.ijconst
Vtest[:, -1] = self.e_single_test
# Real space electron-ion part
# ei_distances shape (conf, atom, dim)
ei_distances = configs.dist.dist_i(self.atom_coords, epos.configs)
rvec = ei_distances[:, :, np.newaxis, :] + self.lattice_displacements
r = np.linalg.norm(rvec, axis=-1)
Vtest[:, -1] += np.einsum(
"k,jkl->j", -self.atom_charges, erfc(self.alpha * r) / r
)
# Real space electron-electron part
ee_distances = configs.dist.dist_i(configs.configs, epos.configs)
rvec = ee_distances[:, :, np.newaxis, :] + self.lattice_displacements
r = np.linalg.norm(rvec, axis=-1)
Vtest[:, :-1] += np.sum(erfc(self.alpha * r) / r, axis=-1)
# Reciprocal space electron-electron part
e_expGdotR = np.exp(1j * np.dot(configs.configs, self.gpoints.T))
test_exp = np.exp(1j * np.dot(epos.configs, self.gpoints.T))
ee_recip_separated = np.dot(np.real(test_exp.conj() * e_expGdotR), self.gweight)
Vtest[:, :-1] += 2 * ee_recip_separated
# Reciprocal space electrin-ion part
coscos_sinsin = np.real(-self.ion_exp.conj() * test_exp)
ei_recip_separated = np.dot(coscos_sinsin + 0.5, self.gweight)
Vtest[:, -1] += 2 * ei_recip_separated
return Vtest
示例11: log_relative_gauss
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfc [as 別名]
def log_relative_gauss(z):
if z < -6:
return 1, -1.0e12, -1
if z > 6:
return 0, 0, 1
else:
logphi = -0.5 * (z * z + l2p)
logPhi = np.log(.5 * special.erfc(-z / sq2))
e = np.exp(logphi - logPhi)
return e, logPhi, 0
示例12: _pdf
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfc [as 別名]
def _pdf(self, x, K):
# exponnorm.pdf(x, K) =
# 1/(2*K) exp(1/(2 * K**2)) exp(-x / K) * erfc-(x - 1/K) / sqrt(2))
invK = 1.0 / K
exparg = 0.5 * invK**2 - invK * x
# Avoid overflows; setting np.exp(exparg) to the max float works
# all right here
expval = _lazywhere(exparg < _LOGXMAX, (exparg,), np.exp, _XMAX)
return 0.5 * invK * expval * sc.erfc(-(x - invK) / np.sqrt(2))
示例13: _logpdf
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfc [as 別名]
def _logpdf(self, x, K):
invK = 1.0 / K
exparg = 0.5 * invK**2 - invK * x
return exparg + np.log(0.5 * invK * sc.erfc(-(x - invK) / np.sqrt(2)))
示例14: _cdf
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfc [as 別名]
def _cdf(self, x):
# Equivalent to 2*norm.sf(np.sqrt(1/x))
return sc.erfc(np.sqrt(0.5 / x))
示例15: test_erfc
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erfc [as 別名]
def test_erfc(self):
assert_mpmath_equal(sc.erfc,
_exception_to_nan(lambda z: mpmath.erfc(z)),
[Arg()])