當前位置: 首頁>>代碼示例>>Python>>正文


Python special.erf方法代碼示例

本文整理匯總了Python中scipy.special.erf方法的典型用法代碼示例。如果您正苦於以下問題:Python special.erf方法的具體用法?Python special.erf怎麽用?Python special.erf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.special的用法示例。


在下文中一共展示了special.erf方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _get_likelihood_values_for

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erf [as 別名]
def _get_likelihood_values_for(self, gmpe, imt):
        """
        Returns the likelihood values for Total, plus inter- and intra-event
        residuals according to Equation 9 of Scherbaum et al (2004) for the
        given gmpe and the given intensity measure type.
        `gmpe` must be in this object gmpe(s) list and imt must be defined
        for the given gmpe: this two conditions are not checked for here.

        :return: a dict mapping the residual type(s) (string) to the tuple
        lh, median_lh where the first is the array of likelihood values and
        the latter is the median of those values
        """

        ret = {}
        for res_type in self.types[gmpe][imt]:
            zvals = np.fabs(self.residuals[gmpe][imt][res_type])
            l_h = 1.0 - erf(zvals / sqrt(2.))
            median_lh = np.nanpercentile(l_h, 50.0)
            ret[res_type] = l_h, median_lh
        return ret 
開發者ID:GEMScienceTools,項目名稱:gmpe-smtk,代碼行數:22,代碼來源:gmpe_residuals.py

示例2: testElf

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erf [as 別名]
def testElf(self):
        raw = np.random.rand(10, 8, 5)
        t = tensor(raw, chunk_size=3)

        r = erf(t)
        expect = scipy_erf(raw)

        self.assertEqual(r.shape, raw.shape)
        self.assertEqual(r.dtype, expect.dtype)

        r = r.tiles()
        t = get_tiled(t)

        self.assertEqual(r.nsplits, t.nsplits)
        for c in r.chunks:
            self.assertIsInstance(c.op, TensorErf)
            self.assertEqual(c.index, c.inputs[0].index)
            self.assertEqual(c.shape, c.inputs[0].shape) 
開發者ID:mars-project,項目名稱:mars,代碼行數:20,代碼來源:test_special.py

示例3: _stats

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erf [as 別名]
def _stats(self, c):
        # Regina C. Elandt, Technometrics 3, 551 (1961)
        # http://www.jstor.org/stable/1266561
        #
        c2 = c*c
        expfac = np.exp(-0.5*c2) / np.sqrt(2.*np.pi)

        mu = 2.*expfac + c * sc.erf(c/np.sqrt(2))
        mu2 = c2 + 1 - mu*mu

        g1 = 2. * (mu*mu*mu - c2*mu - expfac)
        g1 /= np.power(mu2, 1.5)

        g2 = c2 * (c2 + 6.) + 3 + 8.*expfac*mu
        g2 += (2. * (c2 - 3.) - 3. * mu**2) * mu**2
        g2 = g2 / mu2**2.0 - 3.

        return mu, mu2, g1, g2 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:_continuous_distns.py

示例4: foldnorm_stats

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erf [as 別名]
def foldnorm_stats(self, c):
    arr, where, inf, sqrt, nan = np.array, np.where, np.inf, np.sqrt, np.nan
    exp = np.exp
    pi = np.pi

    fac = special.erf(c/sqrt(2))
    mu = sqrt(2.0/pi)*exp(-0.5*c*c)+c*fac
    mu2 = c*c + 1 - mu*mu
    c2 = c*c
    g1 = sqrt(2/pi)*exp(-1.5*c2)*(4-pi*exp(c2)*(2*c2+1.0))
    g1 += 2*c*fac*(6*exp(-c2) + 3*sqrt(2*pi)*c*exp(-c2/2.0)*fac + \
                   pi*c*(fac*fac-1))
    g1 /= pi*mu2**1.5

    g2 = c2*c2+6*c2+3+6*(c2+1)*mu*mu - 3*mu**4
    g2 -= 4*exp(-c2/2.0)*mu*(sqrt(2.0/pi)*(c2+2)+c*(c2+3)*exp(c2/2.0)*fac)
    g2 /= mu2**2.0
    g2 -= 3.
    return mu, mu2, g1, g2

#stats.distributions.foldnorm_gen._stats = foldnorm_stats 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:23,代碼來源:test_transf.py

示例5: _analytic_gaussian_statevector

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erf [as 別名]
def _analytic_gaussian_statevector(self, total_samples, gauss_sigma, omega_a):
        r"""Computes analytic statevector for gaussian drive. Solving the Schrodinger equation in
        the rotating frame leads to the analytic solution `(\cos(x), -i\sin(x)) with
        `x = \frac{1}{2}\sqrt{\frac{\pi}{2}}\sigma\omega_a erf(\frac{t}{\sqrt{2}\sigma}).

        Args:
            total_samples (int): length of pulses
            gauss_sigma (float): std dev for the gaussian drive
            omega_a (float): Q0 drive amplitude
        Returns:
            exp_statevector (list): analytic form of the statevector computed for gaussian drive
                (Returned in the rotating frame)
        """
        time = total_samples
        arg = 1 / 2 * np.sqrt(np.pi / 2) * gauss_sigma * omega_a * erf(
            time / np.sqrt(2) / gauss_sigma)
        exp_statevector = [np.cos(arg), -1j * np.sin(arg)]
        return exp_statevector 
開發者ID:Qiskit,項目名稱:qiskit-aer,代碼行數:20,代碼來源:test_pulse_simulator.py

示例6: test_erf_basic_sanity

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erf [as 別名]
def test_erf_basic_sanity():
    """
    Taken from literature directory 'error_functions.pdf'
    which is from U. Waterloo, Canada.
    """
    test_data = ((0.0, 0.0000000000),
                 (0.5, 0.5204998778),
                 (1.0, 0.8427007929),
                 (1.5, 0.9661051465),
                 (2.0, 0.9953222650),
                 (2.5, 0.9995930480),
                 (3.0, 0.9999779095),
                 (3.5, 0.9999992569),
                 (4.0, 0.9999999846),
                 (4.5, 0.9999999998))

    x, expected = zip(*test_data)
    output = erf(np.array(x))
    assert np.allclose(expected, output, atol=1.5e-7)  # max error 1.5e-7 
開發者ID:fastats,項目名稱:fastats,代碼行數:21,代碼來源:test_erf.py

示例7: anomalies

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erf [as 別名]
def anomalies(log_z, row_label=None, prefix=''):
    from scipy.special import erf

    ns = log_z.shape[0]
    if row_label is None:
        row_label = list(map(str, range(ns)))
    a_score = np.sum(log_z[:, :], axis=1)
    mean, std = np.mean(a_score), np.std(a_score)
    a_score = (a_score - mean) / std
    percentile = 1. / ns
    anomalies = np.where(0.5 * (1 - erf(a_score / np.sqrt(2)) ) < percentile)[0]
    f = safe_open(prefix + '/anomalies.txt', 'w+')
    for i in anomalies:
        f.write(row_label[i] + ', %0.1f\n' % a_score[i])
    f.close()


# Utilities
# IT UTILITIES 
開發者ID:gregversteeg,項目名稱:corex_topic,代碼行數:21,代碼來源:vis_topic.py

示例8: gaussian_fit_cdf

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erf [as 別名]
def gaussian_fit_cdf(s, mu0=0, sigma0=1, return_all=False, **leastsq_kwargs):
    """Gaussian fit of samples s fitting the empirical CDF.
    Additional kwargs are passed to the leastsq() function.
    If return_all=False then return only the fitted (mu,sigma) values
    If return_all=True (or full_output=True is passed to leastsq)
    then the full output of leastsq and the histogram is returned.
    """
    ## Empirical CDF
    ecdf = [np.sort(s), np.arange(0.5, s.size+0.5)*1./s.size]

    ## Analytical Gaussian CDF
    gauss_cdf = lambda x, mu, sigma: 0.5*(1+erf((x-mu)/(np.sqrt(2)*sigma)))

    ## Fitting the empirical CDF
    err_func = lambda p, x, y: y - gauss_cdf(x, p[0], p[1])
    res = leastsq(err_func, x0=[mu0, sigma0], args=(ecdf[0], ecdf[1]),
            **leastsq_kwargs)
    if return_all: return res, ecdf
    return res[0] 
開發者ID:tritemio,項目名稱:FRETBursts,代碼行數:21,代碼來源:gaussian_fitting.py

示例9: gaussian2d_fit

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erf [as 別名]
def gaussian2d_fit(sx, sy, guess=[0.5,1]):
    """2D-Gaussian fit of samples S using a fit to the empirical CDF."""
    assert sx.size == sy.size

    ## Empirical CDF
    ecdfx = [np.sort(sx), np.arange(0.5,sx.size+0.5)*1./sx.size]
    ecdfy = [np.sort(sy), np.arange(0.5,sy.size+0.5)*1./sy.size]

    ## Analytical gaussian CDF
    gauss_cdf = lambda x, mu, sigma: 0.5*(1+erf((x-mu)/(np.sqrt(2)*sigma)))

    ## Fitting the empirical CDF
    fitfunc = lambda p, x: gauss_cdf(x, p[0], p[1])
    errfunc = lambda p, x, y: fitfunc(p, x) - y
    px,v = leastsq(errfunc, x0=guess, args=(ecdfx[0],ecdfx[1]))
    py,v = leastsq(errfunc, x0=guess, args=(ecdfy[0],ecdfy[1]))
    print("2D Gaussian CDF fit", px, py)

    mux, sigmax = px[0], px[1]
    muy, sigmay = py[0], py[1]
    return mux, sigmax, muy, sigmay 
開發者ID:tritemio,項目名稱:FRETBursts,代碼行數:23,代碼來源:gaussian_fitting.py

示例10: test_erf_complex

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erf [as 別名]
def test_erf_complex():
    # need to increase mpmath precision for this test
    old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec
    try:
        mpmath.mp.dps = 70
        x1, y1 = np.meshgrid(np.linspace(-10, 1, 31), np.linspace(-10, 1, 11))
        x2, y2 = np.meshgrid(np.logspace(-80, .8, 31), np.logspace(-80, .8, 11))
        points = np.r_[x1.ravel(),x2.ravel()] + 1j*np.r_[y1.ravel(), y2.ravel()]

        assert_func_equal(sc.erf, lambda x: complex(mpmath.erf(x)), points,
                          vectorized=False, rtol=1e-13)
        assert_func_equal(sc.erfc, lambda x: complex(mpmath.erfc(x)), points,
                          vectorized=False, rtol=1e-13)
    finally:
        mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec


# ------------------------------------------------------------------------------
# lpmv
# ------------------------------------------------------------------------------ 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:22,代碼來源:test_mpmath.py

示例11: erf_local

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erf [as 別名]
def erf_local(x):
    # save the sign of x
    sign = 1 if x >= 0 else -1
    x = abs(x)

    # constants
    a1 =  0.254829592
    a2 = -0.284496736
    a3 =  1.421413741
    a4 = -1.453152027
    a5 =  1.061405429
    p  =  0.3275911

    # A&S formula 7.1.26
    t = 1.0/(1.0 + p*x)
    y = 1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*math.exp(-x*x)
    return sign*y # erf(-x) = -erf(x) 
開發者ID:spectralpython,項目名稱:spectral,代碼行數:19,代碼來源:resampling.py

示例12: _create_filter_kernel

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erf [as 別名]
def _create_filter_kernel(N, sampling_frequency, freq_min, freq_max, freq_wid=1000):
    # Matches ahb's code /matlab/processors/ms_bandpass_filter.m
    # improved ahb, changing tanh to erf, correct -3dB pts  6/14/16
    T = N / sampling_frequency  # total time
    df = 1 / T  # frequency grid
    relwid = 3.0  # relative bottom-end roll-off width param, kills low freqs by factor 1e-5.

    k_inds = np.arange(0, N)
    k_inds = np.where(k_inds <= (N + 1) / 2, k_inds, k_inds - N)

    fgrid = df * k_inds
    absf = np.abs(fgrid)

    val = np.ones(fgrid.shape)
    if freq_min != 0:
        val = val * (1 + special.erf(relwid * (absf - freq_min) / freq_min)) / 2
        val = np.where(np.abs(k_inds) < 0.1, 0, val)  # kill DC part exactly
    if freq_max != 0:
        val = val * (1 - special.erf((absf - freq_max) / freq_wid)) / 2;
    val = np.sqrt(val)  # note sqrt of filter func to apply to spectral intensity not ampl
    return val 
開發者ID:SpikeInterface,項目名稱:spiketoolkit,代碼行數:23,代碼來源:bandpass_filter.py

示例13: ee_xx_step

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erf [as 別名]
def ee_xx_step(res, aniso, off, time):
    """VTI-Halfspace step response, xx, inline.

    res   : horizontal resistivity [Ohm.m]
    aniso : anisotropy [-]
    off   : offset [m]
    time  : time(s) [s]
    """
    tau_h = np.sqrt(mu_0*off**2/(res*time))
    t0 = erf(tau_h/2)
    t1 = 2*aniso*erf(tau_h/(2*aniso))
    t2 = tau_h/np.sqrt(np.pi)*np.exp(-tau_h**2/(4*aniso**2))
    Exx = res/(2*np.pi*off**3)*(2*aniso + t0 - t1 + t2)
    return Exx


###############################################################################
# Example 1: Source and receiver at z=0m
# --------------------------------------
#
# Comparison with analytical solution; put 1 mm below the interface, as they
# would be regarded as in the air by `emmod` otherwise. 
開發者ID:empymod,項目名稱:empymod,代碼行數:24,代碼來源:step_and_impulse.py

示例14: test_time

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erf [as 別名]
def test_time(res, off, t, signal):
    r"""Time domain analytical half-space solution.
    - Source at x = y = z = 0 m
    - Receiver at y = z = 0 m; x = off
    - Resistivity of halfspace res
    - Times t, t > 0 s
    - Impulse response if signal = 0
    - Switch-on response if signal = 1
    """
    tau = np.sqrt(mu_0*off**2/(res*t))
    fact1 = res/(2*np.pi*off**3)
    fact2 = tau/np.sqrt(np.pi)
    if signal == 0:
        return fact1*tau**3/(4*t*np.sqrt(np.pi))*np.exp(-tau**2/4)
    else:
        resp = fact1*(2 - special.erf(tau/2) + fact2*np.exp(-tau**2/4))
        if signal < 0:
            DC = test_time(res, off, 1000000, 1)
            resp = DC-resp
        return resp


# Time-domain solution 
開發者ID:empymod,項目名稱:empymod,代碼行數:25,代碼來源:transform.py

示例15: dqK_dx

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import erf [as 別名]
def dqK_dx(self, x2: np.ndarray) -> np.ndarray:
        """
        gradient of the kernel mean (integrated in first argument) evaluated at x2
        :param x2: points at which to evaluate, shape (n_point N, input_dim)
        :return: the gradient with shape (input_dim, N)
        """
        lower_bounds = self.integral_bounds.lower_bounds
        upper_bounds = self.integral_bounds.upper_bounds
        exp_lo = np.exp(- self._scaled_vector_diff(x2, lower_bounds) ** 2)
        exp_up = np.exp(- self._scaled_vector_diff(x2, upper_bounds) ** 2)
        erf_lo = erf(self._scaled_vector_diff(lower_bounds, x2))
        erf_up = erf(self._scaled_vector_diff(upper_bounds, x2))

        fraction = ((exp_lo - exp_up) / (self.lengthscale * np.sqrt(np.pi / 2.) * (erf_up - erf_lo))).T

        return self.qK(x2) * fraction 
開發者ID:amzn,項目名稱:emukit,代碼行數:18,代碼來源:quadrature_rbf.py


注:本文中的scipy.special.erf方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。