本文整理匯總了Python中scipy.special.comb方法的典型用法代碼示例。如果您正苦於以下問題:Python special.comb方法的具體用法?Python special.comb怎麽用?Python special.comb使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.special
的用法示例。
在下文中一共展示了special.comb方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_celeba_task_pool
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import comb [as 別名]
def get_celeba_task_pool(self, attributes, order=3, print_partition=None):
"""
Produces partitions: a list of dictionaries (key: 0 or 1, value: list of data indices), which is
compatible with the other methods of this class.
"""
num_pools = 0
partitions = []
from scipy.special import comb
for attr_comb in tqdm(combinations(range(attributes.shape[1]), order), desc='get_task_pool', total=comb(attributes.shape[1], order)):
for booleans in product(range(2), repeat=order-1):
booleans = (0,) + booleans # only the half of the cartesian products that start with 0
positive = np.where(np.all([attributes[:, attr] == i_booleans for (attr, i_booleans) in zip(attr_comb, booleans)], axis=0))[0]
if len(positive) < self.num_samples_per_class:
continue
negative = np.where(np.all([attributes[:, attr] == 1 - i_booleans for (attr, i_booleans) in zip(attr_comb, booleans)], axis=0))[0]
if len(negative) < self.num_samples_per_class:
continue
# inner_pool[booleans] = {0: list(negative), 1: list(positive)}
partitions.append({0: list(negative), 1: list(positive)})
num_pools += 1
if num_pools == print_partition:
print(attr_comb, booleans)
print('Generated {} task pools by using {} attributes from {} per pool'.format(num_pools, order, attributes.shape[1]))
return partitions
示例2: _exact_p_value
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import comb [as 別名]
def _exact_p_value(self):
r"""
Computes the exact p-value of the McNemar test.
Returns
-------
p_value : float
The calculated exact p-value.
Notes
-----
The one-sided exact p-value is defined as the following:
.. math::
p_{exact} = \sum^n_{i=n_{12}} \binom{n}{i} \frac{1}{2}^i (1 - \frac{1}{2})^{n - i}
"""
i = self.table[0, 1]
n = self.table[1, 0] + self.table[0, 1]
i_n = np.arange(i + 1, n + 1)
p_value = 1 - np.sum(comb(n, i_n) * 0.5 ** i_n * (1 - 0.5) ** (n - i_n))
return p_value * 2
示例3: NumRegressors
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import comb [as 別名]
def NumRegressors(npix, pld_order, cross_terms=True):
'''
Return the number of regressors for `npix` pixels
and PLD order `pld_order`.
:param bool cross_terms: Include pixel cross-terms? Default :py:obj:`True`
'''
res = 0
for k in range(1, pld_order + 1):
if cross_terms:
res += comb(npix + k - 1, k)
else:
res += npix
return int(res)
示例4: _construct_collection
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import comb [as 別名]
def _construct_collection(
orders,
dist,
x_lookup,
w_lookup,
):
"""Create a collection of {abscissa: weight} key-value pairs."""
order = numpy.min(orders)
skew = orders-order
# Indices and coefficients used in the calculations
indices = numpoly.glexindex(
order-len(dist)+1, order+1, dimensions=len(dist))
coeffs = numpy.sum(indices, -1)
coeffs = (2*((order-coeffs+1) % 2)-1)*comb(len(dist)-1, order-coeffs)
collection = defaultdict(float)
for bidx, coeff in zip(indices+skew, coeffs.tolist()):
abscissas = [value[idx] for idx, value in zip(bidx, x_lookup)]
weights = [value[idx] for idx, value in zip(bidx, w_lookup)]
for abscissa, weight in zip(product(*abscissas), product(*weights)):
collection[abscissa] += numpy.prod(weight)*coeff
return collection
示例5: _nCr
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import comb [as 別名]
def _nCr(n, r):
"""Number of combinations of r items out of a set of n. Equals n!/(r!(n-r)!)"""
#f = _math.factorial; return f(n) / f(r) / f(n-r)
return _spspecial.comb(n, r)
示例6: lp2bp
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import comb [as 別名]
def lp2bp(b, a, wo=1.0, bw=1.0):
"""
Transform a lowpass filter prototype to a bandpass filter.
Return an analog band-pass filter with center frequency `wo` and
bandwidth `bw` from an analog low-pass filter prototype with unity
cutoff frequency, in transfer function ('ba') representation.
"""
a, b = map(atleast_1d, (a, b))
D = len(a) - 1
N = len(b) - 1
artype = mintypecode((a, b))
ma = max([N, D])
Np = N + ma
Dp = D + ma
bprime = numpy.zeros(Np + 1, artype)
aprime = numpy.zeros(Dp + 1, artype)
wosq = wo * wo
for j in range(Np + 1):
val = 0.0
for i in range(0, N + 1):
for k in range(0, i + 1):
if ma - i + 2 * k == j:
val += comb(i, k) * b[N - i] * (wosq) ** (i - k) / bw ** i
bprime[Np - j] = val
for j in range(Dp + 1):
val = 0.0
for i in range(0, D + 1):
for k in range(0, i + 1):
if ma - i + 2 * k == j:
val += comb(i, k) * a[D - i] * (wosq) ** (i - k) / bw ** i
aprime[Dp - j] = val
return normalize(bprime, aprime)
示例7: lp2bs
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import comb [as 別名]
def lp2bs(b, a, wo=1.0, bw=1.0):
"""
Transform a lowpass filter prototype to a bandstop filter.
Return an analog band-stop filter with center frequency `wo` and
bandwidth `bw` from an analog low-pass filter prototype with unity
cutoff frequency, in transfer function ('ba') representation.
"""
a, b = map(atleast_1d, (a, b))
D = len(a) - 1
N = len(b) - 1
artype = mintypecode((a, b))
M = max([N, D])
Np = M + M
Dp = M + M
bprime = numpy.zeros(Np + 1, artype)
aprime = numpy.zeros(Dp + 1, artype)
wosq = wo * wo
for j in range(Np + 1):
val = 0.0
for i in range(0, N + 1):
for k in range(0, M - i + 1):
if i + 2 * k == j:
val += (comb(M - i, k) * b[N - i] *
(wosq) ** (M - i - k) * bw ** i)
bprime[Np - j] = val
for j in range(Dp + 1):
val = 0.0
for i in range(0, D + 1):
for k in range(0, M - i + 1):
if i + 2 * k == j:
val += (comb(M - i, k) * a[D - i] *
(wosq) ** (M - i - k) * bw ** i)
aprime[Dp - j] = val
return normalize(bprime, aprime)
示例8: bilinear
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import comb [as 別名]
def bilinear(b, a, fs=1.0):
"""Return a digital filter from an analog one using a bilinear transform.
The bilinear transform substitutes ``(z-1) / (z+1)`` for ``s``.
"""
fs = float(fs)
a, b = map(atleast_1d, (a, b))
D = len(a) - 1
N = len(b) - 1
artype = float
M = max([N, D])
Np = M
Dp = M
bprime = numpy.zeros(Np + 1, artype)
aprime = numpy.zeros(Dp + 1, artype)
for j in range(Np + 1):
val = 0.0
for i in range(N + 1):
for k in range(i + 1):
for l in range(M - i + 1):
if k + l == j:
val += (comb(i, k) * comb(M - i, l) * b[N - i] *
pow(2 * fs, i) * (-1) ** k)
bprime[j] = real(val)
for j in range(Dp + 1):
val = 0.0
for i in range(D + 1):
for k in range(i + 1):
for l in range(M - i + 1):
if k + l == j:
val += (comb(i, k) * comb(M - i, l) * a[D - i] *
pow(2 * fs, i) * (-1) ** k)
aprime[j] = real(val)
return normalize(bprime, aprime)
示例9: from_bernstein_basis
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import comb [as 別名]
def from_bernstein_basis(cls, bp, extrapolate=None):
"""
Construct a piecewise polynomial in the power basis
from a polynomial in Bernstein basis.
Parameters
----------
bp : BPoly
A Bernstein basis polynomial, as created by BPoly
extrapolate : bool or 'periodic', optional
If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If 'periodic', periodic extrapolation is used. Default is True.
"""
dx = np.diff(bp.x)
k = bp.c.shape[0] - 1 # polynomial order
rest = (None,)*(bp.c.ndim-2)
c = np.zeros_like(bp.c)
for a in range(k+1):
factor = (-1)**a * comb(k, a) * bp.c[a]
for s in range(a, k+1):
val = comb(k-a, s-a) * (-1)**s
c[k-s] += factor * val / dx[(slice(None),)+rest]**s
if extrapolate is None:
extrapolate = bp.extrapolate
return cls.construct_fast(c, bp.x, extrapolate, bp.axis)
示例10: from_power_basis
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import comb [as 別名]
def from_power_basis(cls, pp, extrapolate=None):
"""
Construct a piecewise polynomial in Bernstein basis
from a power basis polynomial.
Parameters
----------
pp : PPoly
A piecewise polynomial in the power basis
extrapolate : bool or 'periodic', optional
If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If 'periodic', periodic extrapolation is used. Default is True.
"""
dx = np.diff(pp.x)
k = pp.c.shape[0] - 1 # polynomial order
rest = (None,)*(pp.c.ndim-2)
c = np.zeros_like(pp.c)
for a in range(k+1):
factor = pp.c[a] / comb(k, k-a) * dx[(slice(None),)+rest]**(k-a)
for j in range(k-a, k+1):
c[j] += factor * comb(j, k-a)
if extrapolate is None:
extrapolate = pp.extrapolate
return cls.construct_fast(c, pp.x, extrapolate, pp.axis)
示例11: _munp
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import comb [as 別名]
def _munp(self, n, c):
def __munp(n, c):
val = 0.0
k = np.arange(0, n + 1)
for ki, cnk in zip(k, sc.comb(n, k)):
val = val + cnk * (-1) ** ki / (1.0 - c * ki)
return np.where(c * n < 1, val * (-1.0 / c) ** n, np.inf)
return _lazywhere(c != 0, (c,),
lambda c: __munp(n, c),
sc.gamma(n + 1))
示例12: _p_value
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import comb [as 別名]
def _p_value(self):
r"""
Calculates the p-value of the binomial test.
Returns
-------
pval : float
The computed p-value.
"""
successes = np.arange(self.x + 1)
pval = np.sum(comb(self.n, successes) * self.p ** successes * self.q ** (self.n - successes))
if self.alternative in ('two-sided', 'greater'):
other_tail = np.arange(self.x, self.n + 1)
y = comb(self.n, self.x) * (self.p ** self.x) * self.q ** (self.n - self.x)
p_othertail = comb(self.n, other_tail) * self.p ** other_tail * self.q ** (self.n - other_tail)
p_othertail = np.sum(p_othertail[p_othertail <= y])
if self.alternative == 'two-sided':
pval = p_othertail * 2
#pval = 1 - pval
elif self.alternative == 'greater':
pval = p_othertail
return pval
示例13: abund_log_prob
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import comb [as 別名]
def abund_log_prob(genotype, abundance, refrabund=None, mean=30.0, sd=8.0,
error=0.001):
"""Calculate probability of k-mer abundance conditioned on genotype.
The `genotype` variable represents the number of assumed allele copies and
is one of {0, 1, 2} (corresponding to genotypes {0/0, 0/1, and 1/1}). The
`mean` and `sd` variables describe a normal distribution of observed
abundances of k-mers with copy number 2. The `error` parameter is the
sequencing error rate.
For SNVs, there is a 1-to-1 correspondence of alternate allele k-mers to
reference allele k-mers. We can therefore check the frequency of the
reference allele in the reference genome and scale up the error rate if it
is repetitive. There is no such mapping of alt allele k-mers to refr allele
k-mers for indels, so we use a lower fixed error rate.
"""
if genotype == 0:
if not refrabund: # INDEL mode
refrabund = 1
error *= 0.01
scaledmean = mean * refrabund
if abundance > scaledmean:
abundance = scaledmean
nCk = choose(scaledmean, abundance, exact=True)
prob = (
log(nCk)
+ (abundance * log(error))
+ ((scaledmean - abundance) * log(1.0 - error))
)
return prob
elif genotype == 1:
return scipy.stats.norm.logpdf(abundance, mean / 2, sd / 2)
elif genotype == 2:
return scipy.stats.norm.logpdf(abundance, mean, sd)
示例14: test_jw_number_indices
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import comb [as 別名]
def test_jw_number_indices(self):
n_qubits = numpy.random.randint(1, 12)
n_particles = numpy.random.randint(n_qubits + 1)
number_indices = jw_number_indices(n_particles, n_qubits)
subspace_dimension = len(number_indices)
self.assertEqual(subspace_dimension, comb(n_qubits, n_particles))
for index in number_indices:
binary_string = bin(index)[2:].zfill(n_qubits)
n_ones = binary_string.count('1')
self.assertEqual(n_ones, n_particles)
示例15: hypergeom_lh
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import comb [as 別名]
def hypergeom_lh(ho, ha, trial, n, g, N):
"""
Returns likelihood ratio for independently distributed hypergeometric random variables.
Parameters
----------
ho : float
null hypothesis
ha : float
alternative hypothesis
trial : float
number of good elements in recent sample
n : float or int
sample size
g : float or int
number of good elements in sample
N : float or int
total population size
Returns
-------
float
likelihood ratio of model
"""
ho_G, ha_G = ho * (N / n), ha * (N / n)
null_lh = (comb(ho_G, g) * comb(N - ho_G, n - g))
alt_lh = (comb(ha_G, g) * comb(N - ha_G, n - g))
return alt_lh / null_lh