本文整理匯總了Python中scipy.special.beta方法的典型用法代碼示例。如果您正苦於以下問題:Python special.beta方法的具體用法?Python special.beta怎麽用?Python special.beta使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.special
的用法示例。
在下文中一共展示了special.beta方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _pdf_skip
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _pdf_skip(self, x, dfn, dfd, nc):
# ncf.pdf(x, df1, df2, nc) = exp(nc/2 + nc*df1*x/(2*(df1*x+df2))) *
# df1**(df1/2) * df2**(df2/2) * x**(df1/2-1) *
# (df2+df1*x)**(-(df1+df2)/2) *
# gamma(df1/2)*gamma(1+df2/2) *
# L^{v1/2-1}^{v2/2}(-nc*v1*x/(2*(v1*x+v2))) /
# (B(v1/2, v2/2) * gamma((v1+v2)/2))
n1, n2 = dfn, dfd
term = -nc/2+nc*n1*x/(2*(n2+n1*x)) + sc.gammaln(n1/2.)+sc.gammaln(1+n2/2.)
term -= sc.gammaln((n1+n2)/2.0)
Px = np.exp(term)
Px *= n1**(n1/2) * n2**(n2/2) * x**(n1/2-1)
Px *= (n2+n1*x)**(-(n1+n2)/2)
Px *= sc.assoc_laguerre(-nc*n1*x/(2.0*(n2+n1*x)), n2/2, n1/2-1)
Px /= sc.beta(n1/2, n2/2)
# This function does not have a return. Drop it for now, the generic
# function seems to work OK.
示例2: _munp
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _munp(self, n, beta, m):
"""
Returns the n-th non-central moment of the crystalball function.
"""
N = 1.0 / (m/beta / (m-1) * np.exp(-beta**2 / 2.0) + _norm_pdf_C * _norm_cdf(beta))
def n_th_moment(n, beta, m):
"""
Returns n-th moment. Defined only if n+1 < m
Function cannot broadcast due to the loop over n
"""
A = (m/beta)**m * np.exp(-beta**2 / 2.0)
B = m/beta - beta
rhs = 2**((n-1)/2.0) * sc.gamma((n+1)/2) * (1.0 + (-1)**n * sc.gammainc((n+1)/2, beta**2 / 2))
lhs = np.zeros(rhs.shape)
for k in range(n + 1):
lhs += sc.binom(n, k) * B**(n-k) * (-1)**k / (m - k - 1) * (m/beta)**(-m + k + 1)
return A * lhs + rhs
return N * _lazywhere(np.atleast_1d(n + 1 < m),
(n, beta, m),
np.vectorize(n_th_moment, otypes=[np.float]),
np.inf)
示例3: fitted
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def fitted(self, lin_pred):
r"""
Fitted values based on linear predictors lin_pred.
Parameters
-----------
lin_pred : array
Values of the linear predictor of the model.
:math:`X \cdot \beta` in a classical linear model.
Returns
--------
mu : array
The mean response variables given by the inverse of the link
function.
"""
fits = self.link.inverse(lin_pred)
return fits
示例4: _rvs
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _rvs(self, a, b):
return self._random_state.beta(a, b, self._size)
示例5: _pdf
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _pdf(self, x, a, b):
# gamma(a+b) * x**(a-1) * (1-x)**(b-1)
# beta.pdf(x, a, b) = ------------------------------------
# gamma(a)*gamma(b)
return np.exp(self._logpdf(x, a, b))
示例6: _argcheck
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _argcheck(self, alpha, beta):
return (alpha > 0) & (alpha <= 2) & (beta <= 1) & (beta >= -1)
示例7: _preprocess
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _preprocess(self, x, skew):
# The real 'loc' and 'scale' are handled in the calling pdf(...). The
# local variables 'loc' and 'scale' within pearson3._pdf are set to
# the defaults just to keep them as part of the equations for
# documentation.
loc = 0.0
scale = 1.0
# If skew is small, return _norm_pdf. The divide between pearson3
# and norm was found by brute force and is approximately a skew of
# 0.000016. No one, I hope, would actually use a skew value even
# close to this small.
norm2pearson_transition = 0.000016
ans, x, skew = np.broadcast_arrays([1.0], x, skew)
ans = ans.copy()
# mask is True where skew is small enough to use the normal approx.
mask = np.absolute(skew) < norm2pearson_transition
invmask = ~mask
beta = 2.0 / (skew[invmask] * scale)
alpha = (scale * beta)**2
zeta = loc - alpha / beta
transx = beta * (x[invmask] - zeta)
return ans, x, transx, mask, invmask, beta, alpha, zeta
示例8: _logpdf
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _logpdf(self, x, skew):
# PEARSON3 logpdf GAMMA logpdf
# np.log(abs(beta))
# + (alpha - 1)*np.log(beta*(x - zeta)) + (a - 1)*np.log(x)
# - beta*(x - zeta) - x
# - sc.gammalnalpha) - sc.gammalna)
ans, x, transx, mask, invmask, beta, alpha, _ = (
self._preprocess(x, skew))
ans[mask] = np.log(_norm_pdf(x[mask]))
ans[invmask] = np.log(abs(beta)) + gamma._logpdf(transx, alpha)
return ans
示例9: _ppf
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _ppf(self, q, skew):
ans, q, _, mask, invmask, beta, alpha, zeta = (
self._preprocess(q, skew))
ans[mask] = _norm_ppf(q[mask])
ans[invmask] = sc.gammaincinv(alpha, q[invmask])/beta + zeta
return ans
示例10: _cdf
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _cdf(self, x, beta):
c = 0.5 * np.sign(x)
# evaluating (.5 + c) first prevents numerical cancellation
return (0.5 + c) - c * sc.gammaincc(1.0/beta, abs(x)**beta)
示例11: _isf
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _isf(self, x, beta):
return -self._ppf(x, beta)
示例12: _stats
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _stats(self, beta):
c1, c3, c5 = sc.gammaln([1.0/beta, 3.0/beta, 5.0/beta])
return 0., np.exp(c3 - c1), 0., np.exp(c5 + c1 - 2.0*c3) - 3.
示例13: _entropy
# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _entropy(self, beta):
return 1. / beta - np.log(.5 * beta) + sc.gammaln(1. / beta)