當前位置: 首頁>>代碼示例>>Python>>正文


Python special.beta方法代碼示例

本文整理匯總了Python中scipy.special.beta方法的典型用法代碼示例。如果您正苦於以下問題:Python special.beta方法的具體用法?Python special.beta怎麽用?Python special.beta使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.special的用法示例。


在下文中一共展示了special.beta方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _pdf_skip

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _pdf_skip(self, x, dfn, dfd, nc):
        # ncf.pdf(x, df1, df2, nc) = exp(nc/2 + nc*df1*x/(2*(df1*x+df2))) *
        #             df1**(df1/2) * df2**(df2/2) * x**(df1/2-1) *
        #             (df2+df1*x)**(-(df1+df2)/2) *
        #             gamma(df1/2)*gamma(1+df2/2) *
        #             L^{v1/2-1}^{v2/2}(-nc*v1*x/(2*(v1*x+v2))) /
        #             (B(v1/2, v2/2) * gamma((v1+v2)/2))
        n1, n2 = dfn, dfd
        term = -nc/2+nc*n1*x/(2*(n2+n1*x)) + sc.gammaln(n1/2.)+sc.gammaln(1+n2/2.)
        term -= sc.gammaln((n1+n2)/2.0)
        Px = np.exp(term)
        Px *= n1**(n1/2) * n2**(n2/2) * x**(n1/2-1)
        Px *= (n2+n1*x)**(-(n1+n2)/2)
        Px *= sc.assoc_laguerre(-nc*n1*x/(2.0*(n2+n1*x)), n2/2, n1/2-1)
        Px /= sc.beta(n1/2, n2/2)
        # This function does not have a return.  Drop it for now, the generic
        # function seems to work OK. 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:_continuous_distns.py

示例2: _munp

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _munp(self, n, beta, m):
        """
        Returns the n-th non-central moment of the crystalball function.
        """
        N = 1.0 / (m/beta / (m-1) * np.exp(-beta**2 / 2.0) + _norm_pdf_C * _norm_cdf(beta))

        def n_th_moment(n, beta, m):
            """
            Returns n-th moment. Defined only if n+1 < m
            Function cannot broadcast due to the loop over n
            """
            A = (m/beta)**m * np.exp(-beta**2 / 2.0)
            B = m/beta - beta
            rhs = 2**((n-1)/2.0) * sc.gamma((n+1)/2) * (1.0 + (-1)**n * sc.gammainc((n+1)/2, beta**2 / 2))
            lhs = np.zeros(rhs.shape)
            for k in range(n + 1):
                lhs += sc.binom(n, k) * B**(n-k) * (-1)**k / (m - k - 1) * (m/beta)**(-m + k + 1)
            return A * lhs + rhs

        return N * _lazywhere(np.atleast_1d(n + 1 < m),
                              (n, beta, m),
                              np.vectorize(n_th_moment, otypes=[np.float]),
                              np.inf) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:_continuous_distns.py

示例3: fitted

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def fitted(self, lin_pred):
        r"""
        Fitted values based on linear predictors lin_pred.

        Parameters
        -----------
        lin_pred : array
            Values of the linear predictor of the model.
            :math:`X \cdot \beta` in a classical linear model.

        Returns
        --------
        mu : array
            The mean response variables given by the inverse of the link
            function.
        """
        fits = self.link.inverse(lin_pred)
        return fits 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:20,代碼來源:family.py

示例4: _rvs

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _rvs(self, a, b):
        return self._random_state.beta(a, b, self._size) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:4,代碼來源:_continuous_distns.py

示例5: _pdf

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _pdf(self, x, a, b):
        #                     gamma(a+b) * x**(a-1) * (1-x)**(b-1)
        # beta.pdf(x, a, b) = ------------------------------------
        #                              gamma(a)*gamma(b)
        return np.exp(self._logpdf(x, a, b)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:7,代碼來源:_continuous_distns.py

示例6: _argcheck

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _argcheck(self, alpha, beta):
        return (alpha > 0) & (alpha <= 2) & (beta <= 1) & (beta >= -1) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:4,代碼來源:_continuous_distns.py

示例7: _preprocess

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _preprocess(self, x, skew):
        # The real 'loc' and 'scale' are handled in the calling pdf(...). The
        # local variables 'loc' and 'scale' within pearson3._pdf are set to
        # the defaults just to keep them as part of the equations for
        # documentation.
        loc = 0.0
        scale = 1.0

        # If skew is small, return _norm_pdf. The divide between pearson3
        # and norm was found by brute force and is approximately a skew of
        # 0.000016.  No one, I hope, would actually use a skew value even
        # close to this small.
        norm2pearson_transition = 0.000016

        ans, x, skew = np.broadcast_arrays([1.0], x, skew)
        ans = ans.copy()

        # mask is True where skew is small enough to use the normal approx.
        mask = np.absolute(skew) < norm2pearson_transition
        invmask = ~mask

        beta = 2.0 / (skew[invmask] * scale)
        alpha = (scale * beta)**2
        zeta = loc - alpha / beta

        transx = beta * (x[invmask] - zeta)
        return ans, x, transx, mask, invmask, beta, alpha, zeta 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:29,代碼來源:_continuous_distns.py

示例8: _logpdf

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _logpdf(self, x, skew):
        #   PEARSON3 logpdf                           GAMMA logpdf
        #   np.log(abs(beta))
        # + (alpha - 1)*np.log(beta*(x - zeta))          + (a - 1)*np.log(x)
        # - beta*(x - zeta)                           - x
        # - sc.gammalnalpha)                              - sc.gammalna)
        ans, x, transx, mask, invmask, beta, alpha, _ = (
            self._preprocess(x, skew))

        ans[mask] = np.log(_norm_pdf(x[mask]))
        ans[invmask] = np.log(abs(beta)) + gamma._logpdf(transx, alpha)
        return ans 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:14,代碼來源:_continuous_distns.py

示例9: _ppf

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _ppf(self, q, skew):
        ans, q, _, mask, invmask, beta, alpha, zeta = (
            self._preprocess(q, skew))
        ans[mask] = _norm_ppf(q[mask])
        ans[invmask] = sc.gammaincinv(alpha, q[invmask])/beta + zeta
        return ans 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:8,代碼來源:_continuous_distns.py

示例10: _cdf

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _cdf(self, x, beta):
        c = 0.5 * np.sign(x)
        # evaluating (.5 + c) first prevents numerical cancellation
        return (0.5 + c) - c * sc.gammaincc(1.0/beta, abs(x)**beta) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:6,代碼來源:_continuous_distns.py

示例11: _isf

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _isf(self, x, beta):
        return -self._ppf(x, beta) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:4,代碼來源:_continuous_distns.py

示例12: _stats

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _stats(self, beta):
        c1, c3, c5 = sc.gammaln([1.0/beta, 3.0/beta, 5.0/beta])
        return 0., np.exp(c3 - c1), 0., np.exp(c5 + c1 - 2.0*c3) - 3. 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:5,代碼來源:_continuous_distns.py

示例13: _entropy

# 需要導入模塊: from scipy import special [as 別名]
# 或者: from scipy.special import beta [as 別名]
def _entropy(self, beta):
        return 1. / beta - np.log(.5 * beta) + sc.gammaln(1. / beta) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:4,代碼來源:_continuous_distns.py


注:本文中的scipy.special.beta方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。