本文整理匯總了Python中scipy.spatial.transform.Rotation.from_rotvec方法的典型用法代碼示例。如果您正苦於以下問題:Python Rotation.from_rotvec方法的具體用法?Python Rotation.from_rotvec怎麽用?Python Rotation.from_rotvec使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.spatial.transform.Rotation
的用法示例。
在下文中一共展示了Rotation.from_rotvec方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: estimate_head_pose
# 需要導入模塊: from scipy.spatial.transform import Rotation [as 別名]
# 或者: from scipy.spatial.transform.Rotation import from_rotvec [as 別名]
def estimate_head_pose(self, face: Face, camera: Camera) -> None:
"""Estimate the head pose by fitting 3D template model."""
# If the number of the template points is small, cv2.solvePnP
# becomes unstable, so set the default value for rvec and tvec
# and set useExtrinsicGuess to True.
# The default values of rvec and tvec below mean that the
# initial estimate of the head pose is not rotated and the
# face is in front of the camera.
rvec = np.zeros(3, dtype=np.float)
tvec = np.array([0, 0, 1], dtype=np.float)
_, rvec, tvec = cv2.solvePnP(self.LANDMARKS,
face.landmarks,
camera.camera_matrix,
camera.dist_coefficients,
rvec,
tvec,
useExtrinsicGuess=True,
flags=cv2.SOLVEPNP_ITERATIVE)
rot = Rotation.from_rotvec(rvec)
face.head_pose_rot = rot
face.head_position = tvec
face.reye.head_pose_rot = rot
face.leye.head_pose_rot = rot
示例2: from_rv
# 需要導入模塊: from scipy.spatial.transform import Rotation [as 別名]
# 或者: from scipy.spatial.transform.Rotation import from_rotvec [as 別名]
def from_rv(rv):
"""Create a direction cosine matrix from a rotation vector.
The direction of a rotation vector determines the axis of rotation and its
magnitude determines the angle of rotation.
The returned DCM projects a vector from the rotated frame to the original
frame.
Parameters
----------
rv : array_like, shape (3,) or (n, 3)
Rotation vectors.
Returns
-------
dcm : ndarray, shape (3, 3) or (n, 3, 3)
Direction cosine matrices.
"""
return Rotation.from_rotvec(rv).as_matrix()
示例3: get_mat_angle
# 需要導入模塊: from scipy.spatial.transform import Rotation [as 別名]
# 或者: from scipy.spatial.transform.Rotation import from_rotvec [as 別名]
def get_mat_angle(translation=None, rotation=None, rotation_center=np.array([0., 0, 0])):
mat1 = np.eye(4)
mat2 = np.eye(4)
mat3 = np.eye(4)
mat1[:3, 3] = -rotation_center
mat3[:3, 3] = rotation_center
if translation is not None:
mat3[:3, 3] += translation
if rotation is not None:
mat2[:3, :3] = Rotation.from_rotvec(np.array([0, 0, 1.]) * rotation).as_dcm()
return np.matmul(np.matmul(mat3, mat2), mat1)
示例4: rotate
# 需要導入模塊: from scipy.spatial.transform import Rotation [as 別名]
# 或者: from scipy.spatial.transform.Rotation import from_rotvec [as 別名]
def rotate(self, rotation: Union[ndarray, Rotation]) -> Snap:
"""Rotate snapshot.
Parameters
----------
rotation
The rotation as a scipy.spatial.transform.Rotation object
or ndarray that can be converted to a Rotation object via
Rotation.from_rotvec.
Returns
-------
Snap
The rotated Snap. Note that the rotation operation is
in-place.
Examples
--------
Rotate a Snap by π/3 around [1, 1, 0].
>>> rot = np.array([1, 1, 0])
>>> rot = rot * np.pi / 3 * np.linalg.norm(rot)
>>> snap.rotate(rot)
"""
logger.debug(f'Rotating snapshot: {self.file_path.name}')
if isinstance(rotation, (list, tuple, ndarray)):
rotation = Rotation.from_rotvec(rotation)
for arr in self._vector_arrays:
if arr in self.loaded_arrays():
self._arrays[arr] = rotation.apply(self._arrays[arr])
if arr in self.loaded_arrays(sinks=True):
self._sinks[arr] = rotation.apply(self._sinks[arr])
for arr in self._vector_component_arrays:
if arr in self.loaded_arrays():
del self._arrays[arr]
if arr in self.loaded_arrays(sinks=True):
del self._sinks[arr]
if self.rotation is None:
self.rotation = rotation
else:
rot = rotation * self.rotation
self.rotation = rot
return self
示例5: goniometer_rotation
# 需要導入模塊: from scipy.spatial.transform import Rotation [as 別名]
# 或者: from scipy.spatial.transform.Rotation import from_rotvec [as 別名]
def goniometer_rotation(experiment, reflections):
# type: (Experiment, flex.reflection_table) -> Rotation
"""
Calculate the goniometer rotation operator for each reflection.
Following the DXTBX model of a goniometer, whereby a scan is only possible
around one physical axis at a time, the rotation operation (conventionally
denoted R, here denoted R' to avoid confusion with the notation of
dxtbx/model/goniometer.h) can be calculated as R' = S · R · F.
Here:
* S is the 'setting rotation', the operator denoting the position of all parent
axes of the scan axis, which hence defines the orientation of the scan axis;
* R is the the operator denoting the scan rotation as if it were performed with
all parent axes at zero datum, it has a different value for each reflection,
according to the reflection centroid positions.
* F is the 'fixed rotation', denoting the orientation of all child axes of the
scan axis as if they were performed with all parent axes at zero datum.
Args:
experiment: The DXTBX experiment object corresponding to the scan.
reflections: A table of reflections at which to calculate the rotations.
Returns:
An array of rotation operators, one per reflection in the reflection table.
"""
# Get the axis of the scan rotation.
rotation_axis = experiment.goniometer.get_rotation_axis_datum()
# For each reflection, get the angle of the scan rotation.
angles = reflections["xyzobs.mm.value"].parts()[2]
# Construct a rotation vector (parallel with the rotation axis and with
# magnitude equal to the rotation angle) for each reflection.
# The shape of this array is (N, 3), where N is the number of reflections.
rotvecs = np.outer(angles, rotation_axis)
# Create a rotation operator for each scan rotation (i.e. one per reflection).
# In the notation of dxtbx/model/goniometer.h, this is R.
scan_rotation = Rotation.from_rotvec(rotvecs)
# Get the setting rotation.
# In the notation of dxtbx/model/goniometer.h, this is S.
set_rotation = np.array(experiment.goniometer.get_setting_rotation()).reshape(3, 3)
if hasattr(Rotation, "from_matrix"):
set_rotation = Rotation.from_matrix(set_rotation)
else:
# SciPy < 1.4.0. Can be removed after 15th of September 2020
set_rotation = Rotation.from_dcm(set_rotation)
# Create a rotation operator for those axes that are fixed throughout the scan.
# In the notation of dxtbx/model/goniometer.h, this is F.
fixed_rotation = np.array(experiment.goniometer.get_fixed_rotation()).reshape(3, 3)
if hasattr(Rotation, "from_matrix"):
fixed_rotation = Rotation.from_matrix(fixed_rotation)
else:
# SciPy < 1.4.0. Can be removed after 15th of September 2020
fixed_rotation = Rotation.from_dcm(fixed_rotation)
# Calculate the rotation operator representing the goniometer orientation for each
# reflection. In the notation of dxtbx/model/goniometer.h this is S × R × F.
return set_rotation * scan_rotation * fixed_rotation