本文整理匯總了Python中scipy.spatial.qhull.Delaunay方法的典型用法代碼示例。如果您正苦於以下問題:Python qhull.Delaunay方法的具體用法?Python qhull.Delaunay怎麽用?Python qhull.Delaunay使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.spatial.qhull
的用法示例。
在下文中一共展示了qhull.Delaunay方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: simplex_edge_difference
# 需要導入模塊: from scipy.spatial import qhull [as 別名]
# 或者: from scipy.spatial.qhull import Delaunay [as 別名]
def simplex_edge_difference(X):
tri = Delaunay(X, qhull_options="QJ")
simplices = []
for e in tri.simplices:
diff = X[e[1:]] - X[e[0]]
det = np.linalg.det(diff)
if det > 1e-6:
simplices.append(e)
val = []
for triangle in simplices:
dists = np.zeros(len(triangle))
for i in range(len(triangle)):
a, b = triangle[i], triangle[(i + 1) % len(triangle)]
dists[i] = np.linalg.norm(X[a] - X[b])
val.append(dists.max() - dists.min())
val = np.array(val)
return val.mean()
示例2: test_find_simplex
# 需要導入模塊: from scipy.spatial import qhull [as 別名]
# 或者: from scipy.spatial.qhull import Delaunay [as 別名]
def test_find_simplex(self):
# Simple check that simplex finding works
points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.double)
tri = qhull.Delaunay(points)
# +---+
# |\ 0|
# | \ |
# |1 \|
# +---+
assert_equal(tri.vertices, [[3, 1, 2], [3, 1, 0]])
for p in [(0.25, 0.25, 1),
(0.75, 0.75, 0),
(0.3, 0.2, 1)]:
i = tri.find_simplex(p[:2])
assert_equal(i, p[2], err_msg='%r' % (p,))
j = qhull.tsearch(tri, p[:2])
assert_equal(i, j)
示例3: test_degenerate_barycentric_transforms
# 需要導入模塊: from scipy.spatial import qhull [as 別名]
# 或者: from scipy.spatial.qhull import Delaunay [as 別名]
def test_degenerate_barycentric_transforms(self):
# The triangulation should not produce invalid barycentric
# transforms that stump the simplex finding
data = np.load(os.path.join(os.path.dirname(__file__), 'data',
'degenerate_pointset.npz'))
points = data['c']
data.close()
tri = qhull.Delaunay(points)
# Check that there are not too many invalid simplices
bad_count = np.isnan(tri.transform[:,0,0]).sum()
assert_(bad_count < 20, bad_count)
# Check the transforms
self._check_barycentric_transforms(tri)
示例4: test_smoketest
# 需要導入模塊: from scipy.spatial import qhull [as 別名]
# 或者: from scipy.spatial.qhull import Delaunay [as 別名]
def test_smoketest(self):
x = np.array([(0, 0), (0, 2),
(1, 0), (1, 2), (0.25, 0.75), (0.6, 0.8)], dtype=float)
tri = qhull.Delaunay(x)
# Should be exact for linear functions, independent of triangulation
funcs = [
(lambda x, y: 0*x + 1, (0, 0)),
(lambda x, y: 0 + x, (1, 0)),
(lambda x, y: -2 + y, (0, 1)),
(lambda x, y: 3 + 3*x + 14.15*y, (3, 14.15))
]
for j, (func, grad) in enumerate(funcs):
z = func(x[:,0], x[:,1])
dz = interpnd.estimate_gradients_2d_global(tri, z, tol=1e-6)
assert_equal(dz.shape, (6, 2))
assert_allclose(dz, np.array(grad)[None,:] + 0*dz,
rtol=1e-5, atol=1e-5, err_msg="item %d" % j)
示例5: test_find_simplex
# 需要導入模塊: from scipy.spatial import qhull [as 別名]
# 或者: from scipy.spatial.qhull import Delaunay [as 別名]
def test_find_simplex(self):
# Simple check that simplex finding works
points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.double)
tri = qhull.Delaunay(points)
# +---+
# |\ 0|
# | \ |
# |1 \|
# +---+
assert_equal(tri.vertices, [[1, 3, 2], [3, 1, 0]])
for p in [(0.25, 0.25, 1),
(0.75, 0.75, 0),
(0.3, 0.2, 1)]:
i = tri.find_simplex(p[:2])
assert_equal(i, p[2], err_msg='%r' % (p,))
j = qhull.tsearch(tri, p[:2])
assert_equal(i, j)
示例6: test_degenerate_barycentric_transforms
# 需要導入模塊: from scipy.spatial import qhull [as 別名]
# 或者: from scipy.spatial.qhull import Delaunay [as 別名]
def test_degenerate_barycentric_transforms(self):
# The triangulation should not produce invalid barycentric
# transforms that stump the simplex finding
data = np.load(os.path.join(os.path.dirname(__file__), 'data',
'degenerate_pointset.npz'))
points = data['c']
data.close()
tri = qhull.Delaunay(points)
# Check that there are not too many invalid simplices
bad_count = np.isnan(tri.transform[:,0,0]).sum()
assert_(bad_count < 21, bad_count)
# Check the transforms
self._check_barycentric_transforms(tri)
示例7: test_tri_input_rescale
# 需要導入模塊: from scipy.spatial import qhull [as 別名]
# 或者: from scipy.spatial.qhull import Delaunay [as 別名]
def test_tri_input_rescale(self):
# Test at single points
x = np.array([(0,0), (-5,-5), (-5,5), (5, 5), (2.5, 3)],
dtype=np.double)
y = np.arange(x.shape[0], dtype=np.double)
y = y - 3j*y
tri = qhull.Delaunay(x)
try:
interpnd.LinearNDInterpolator(tri, y, rescale=True)(x)
except ValueError as e:
if str(e) != ("Rescaling is not supported when passing a "
"Delaunay triangulation as ``points``."):
raise
except:
raise
示例8: test_plane_distance
# 需要導入模塊: from scipy.spatial import qhull [as 別名]
# 或者: from scipy.spatial.qhull import Delaunay [as 別名]
def test_plane_distance(self):
# Compare plane distance from hyperplane equations obtained from Qhull
# to manually computed plane equations
x = np.array([(0,0), (1, 1), (1, 0), (0.99189033, 0.37674127),
(0.99440079, 0.45182168)], dtype=np.double)
p = np.array([0.99966555, 0.15685619], dtype=np.double)
tri = qhull.Delaunay(x)
z = tri.lift_points(x)
pz = tri.lift_points(p)
dist = tri.plane_distance(p)
for j, v in enumerate(tri.vertices):
x1 = z[v[0]]
x2 = z[v[1]]
x3 = z[v[2]]
n = np.cross(x1 - x3, x2 - x3)
n /= np.sqrt(np.dot(n, n))
n *= -np.sign(n[2])
d = np.dot(n, pz - x3)
assert_almost_equal(dist[j], d)
示例9: test_convex_hull
# 需要導入模塊: from scipy.spatial import qhull [as 別名]
# 或者: from scipy.spatial.qhull import Delaunay [as 別名]
def test_convex_hull(self):
# Simple check that the convex hull seems to works
points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.double)
tri = qhull.Delaunay(points)
# +---+
# |\ 0|
# | \ |
# |1 \|
# +---+
assert_equal(tri.convex_hull, [[1, 2], [3, 2], [1, 0], [3, 0]])
示例10: test_rectangle
# 需要導入模塊: from scipy.spatial import qhull [as 別名]
# 或者: from scipy.spatial.qhull import Delaunay [as 別名]
def test_rectangle(self):
points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.double)
tri = qhull.Delaunay(points)
self._check(tri)
示例11: test_complicated
# 需要導入模塊: from scipy.spatial import qhull [as 別名]
# 或者: from scipy.spatial.qhull import Delaunay [as 別名]
def test_complicated(self):
points = np.array([(0,0), (0,1), (1,1), (1,0),
(0.5, 0.5), (0.9, 0.5)], dtype=np.double)
tri = qhull.Delaunay(points)
self._check(tri)
示例12: test_nd_simplex
# 需要導入模塊: from scipy.spatial import qhull [as 別名]
# 或者: from scipy.spatial.qhull import Delaunay [as 別名]
def test_nd_simplex(self):
# simple smoke test: triangulate a n-dimensional simplex
for nd in xrange(2, 8):
points = np.zeros((nd+1, nd))
for j in xrange(nd):
points[j,j] = 1.0
points[-1,:] = 1.0
tri = qhull.Delaunay(points)
tri.vertices.sort()
assert_equal(tri.vertices, np.arange(nd+1, dtype=np.int)[None,:])
assert_equal(tri.neighbors, -1 + np.zeros((nd+1), dtype=np.int)[None,:])
示例13: test_2d_square
# 需要導入模塊: from scipy.spatial import qhull [as 別名]
# 或者: from scipy.spatial.qhull import Delaunay [as 別名]
def test_2d_square(self):
# simple smoke test: 2d square
points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.double)
tri = qhull.Delaunay(points)
assert_equal(tri.vertices, [[3, 1, 2], [3, 1, 0]])
assert_equal(tri.neighbors, [[-1, -1, 1], [-1, -1, 0]])
示例14: test_duplicate_points
# 需要導入模塊: from scipy.spatial import qhull [as 別名]
# 或者: from scipy.spatial.qhull import Delaunay [as 別名]
def test_duplicate_points(self):
x = np.array([0, 1, 0, 1], dtype=np.float64)
y = np.array([0, 0, 1, 1], dtype=np.float64)
xp = np.r_[x, x]
yp = np.r_[y, y]
# shouldn't fail on duplicate points
tri = qhull.Delaunay(np.c_[x, y])
tri2 = qhull.Delaunay(np.c_[xp, yp])
示例15: test_joggle
# 需要導入模塊: from scipy.spatial import qhull [as 別名]
# 或者: from scipy.spatial.qhull import Delaunay [as 別名]
def test_joggle(self):
# Check that the option QJ indeed guarantees that all input points
# occur as vertices of the triangulation
points = np.random.rand(10, 2)
points = np.r_[points, points] # duplicate input data
tri = qhull.Delaunay(points, qhull_options="QJ Qbb Pp")
assert_array_equal(np.unique(tri.simplices.ravel()),
np.arange(len(points)))