本文整理匯總了Python中scipy.spatial.distance_matrix方法的典型用法代碼示例。如果您正苦於以下問題:Python spatial.distance_matrix方法的具體用法?Python spatial.distance_matrix怎麽用?Python spatial.distance_matrix使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.spatial
的用法示例。
在下文中一共展示了spatial.distance_matrix方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: hyperball
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import distance_matrix [as 別名]
def hyperball(ndim, radius):
"""Return a binary morphological filter containing pixels within `radius`.
Parameters
----------
ndim : int
The number of dimensions of the filter.
radius : int
The radius of the filter.
Returns
-------
ball : array of bool, shape [2 * radius + 1,] * ndim
The required structural element
"""
size = 2 * radius + 1
center = [(radius,) * ndim]
coords = np.mgrid[[slice(None, size),] * ndim].reshape(ndim, -1).T
distances = np.ravel(spatial.distance_matrix(coords, center))
selector = distances <= radius
ball = np.zeros((size,) * ndim, dtype=bool)
ball.ravel()[selector] = True
return ball
示例2: _krig_matrix
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import distance_matrix [as 別名]
def _krig_matrix(self, src, drift):
"""Sets up the kriging system for a configuration of source points.
"""
# the basic covariance matrix
var_matrix = self.cov_func(spatial.distance_matrix(src, src))
# the extended matrix, initialized to ones
edk_matrix = np.ones((len(src) + 2, len(src) + 2))
# adding entries for the first lagrange multiplier for the ordinary
# kriging part
edk_matrix[:-2, :-2] = var_matrix
edk_matrix[-2, -2] = 0.0
# adding entries for the second lagrange multiplier for the edk part
edk_matrix[:-2, -1] = drift
edk_matrix[-1, :-2] = drift
edk_matrix[-2:, -1] = 0.0
edk_matrix[-1, -2:] = 0.0
return edk_matrix
示例3: test_distance_matrix
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import distance_matrix [as 別名]
def test_distance_matrix():
m = 10
n = 11
k = 4
np.random.seed(1234)
xs = np.random.randn(m,k)
ys = np.random.randn(n,k)
ds = distance_matrix(xs,ys)
assert_equal(ds.shape, (m,n))
for i in range(m):
for j in range(n):
assert_almost_equal(distance(xs[i],ys[j]),ds[i,j])
示例4: test_distance_matrix_looping
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import distance_matrix [as 別名]
def test_distance_matrix_looping():
m = 10
n = 11
k = 4
np.random.seed(1234)
xs = np.random.randn(m,k)
ys = np.random.randn(n,k)
ds = distance_matrix(xs,ys)
dsl = distance_matrix(xs,ys,threshold=1)
assert_equal(ds,dsl)
示例5: _cof
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import distance_matrix [as 別名]
def _cof(self, X):
"""
Connectivity-Based Outlier Factor (COF) Algorithm
This function is called internally to calculate the
Connectivity-Based Outlier Factor (COF) as an outlier
score for observations.
:return: numpy array containing COF scores for observations.
The greater the COF, the greater the outlierness.
"""
dist_matrix = np.array(distance_matrix(X, X))
sbn_path_index, ac_dist, cof_ = [], [], []
for i in range(X.shape[0]):
sbn_path = sorted(range(len(dist_matrix[i])),
key=dist_matrix[i].__getitem__)
sbn_path_index.append(sbn_path[1: self.n_neighbors_ + 1])
cost_desc = []
for j in range(self.n_neighbors_):
cost_desc.append(
np.min(dist_matrix[sbn_path[j + 1]][sbn_path][:j + 1]))
acd = []
for _h, cost_ in enumerate(cost_desc):
neighbor_add1 = self.n_neighbors_ + 1
acd.append(((2. * (neighbor_add1 - (_h + 1))) / (
neighbor_add1 * self.n_neighbors_)) * cost_)
ac_dist.append(np.sum(acd))
for _g in range(X.shape[0]):
cof_.append((ac_dist[_g] * self.n_neighbors_) /
np.sum(itemgetter(*sbn_path_index[_g])(ac_dist)))
return np.nan_to_num(cof_)
示例6: test_distance_matrix
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import distance_matrix [as 別名]
def test_distance_matrix():
m = 10
n = 11
k = 4
np.random.seed(1234)
xs = np.random.randn(m,k)
ys = np.random.randn(n,k)
ds = distance_matrix(xs,ys)
assert_equal(ds.shape, (m,n))
for i in range(m):
for j in range(n):
assert_almost_equal(minkowski_distance(xs[i],ys[j]),ds[i,j])
示例7: get_umatrix
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import distance_matrix [as 別名]
def get_umatrix(input_vects, weights, m, n):
""" Generates an n x m u-matrix of the SOM's weights and bmu indices of all the input data points
Used to visualize higher-dimensional data. Shows the average distance between a SOM unit and its neighbors.
When displayed, areas of a darker color separated by lighter colors correspond to clusters of units which
encode similar information.
:param weights: SOM weight matrix, `ndarray`
:param m: Rows of neurons
:param n: Columns of neurons
:return: m x n u-matrix `ndarray`
:return: input_size x 1 bmu indices 'ndarray'
"""
umatrix = np.zeros((m * n, 1))
# Get the location of the neurons on the map to figure out their neighbors. I know I already have this in the
# SOM code but I put it here too to make it easier to follow.
neuron_locs = list()
for i in range(m):
for j in range(n):
neuron_locs.append(np.array([i, j]))
# Get the map distance between each neuron (i.e. not the weight distance).
neuron_distmat = distance_matrix(neuron_locs, neuron_locs)
for i in range(m * n):
# Get the indices of the units which neighbor i
neighbor_idxs = neuron_distmat[i] <= 1 # Change this to `< 2` if you want to include diagonal neighbors
# Get the weights of those units
neighbor_weights = weights[neighbor_idxs]
# Get the average distance between unit i and all of its neighbors
# Expand dims to broadcast to each of the neighbors
umatrix[i] = distance_matrix(np.expand_dims(weights[i], 0), neighbor_weights).mean()
bmu_indices = []
for vect in input_vects:
min_index = min([i for i in range(len(list(weights)))],
key=lambda x: np.linalg.norm(vect-
list(weights)[x]))
bmu_indices.append(neuron_locs[min_index])
return umatrix, bmu_indices
示例8: greedy_k_center
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import distance_matrix [as 別名]
def greedy_k_center(self, labeled, unlabeled, amount):
greedy_indices = []
# get the minimum distances between the labeled and unlabeled examples (iteratively, to avoid memory issues):
min_dist = np.min(distance_matrix(labeled[0, :].reshape((1, labeled.shape[1])), unlabeled), axis=0)
min_dist = min_dist.reshape((1, min_dist.shape[0]))
for j in range(1, labeled.shape[0], 100):
if j + 100 < labeled.shape[0]:
dist = distance_matrix(labeled[j:j+100, :], unlabeled)
else:
dist = distance_matrix(labeled[j:, :], unlabeled)
min_dist = np.vstack((min_dist, np.min(dist, axis=0).reshape((1, min_dist.shape[1]))))
min_dist = np.min(min_dist, axis=0)
min_dist = min_dist.reshape((1, min_dist.shape[0]))
# iteratively insert the farthest index and recalculate the minimum distances:
farthest = np.argmax(min_dist)
greedy_indices.append(farthest)
for i in range(amount-1):
dist = distance_matrix(unlabeled[greedy_indices[-1], :].reshape((1,unlabeled.shape[1])), unlabeled)
min_dist = np.vstack((min_dist, dist.reshape((1, min_dist.shape[1]))))
min_dist = np.min(min_dist, axis=0)
min_dist = min_dist.reshape((1, min_dist.shape[0]))
farthest = np.argmax(min_dist)
greedy_indices.append(farthest)
return np.array(greedy_indices)
示例9: create_distances
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import distance_matrix [as 別名]
def create_distances(coords):
"""Create the distance matrix from a set of 3D coordinates.
Note that we transform the element 0.0 in the matrix into a large value
for processing by Gaussian exp(-d^2), where d is the distance.
"""
distance_matrix = spatial.distance_matrix(coords, coords)
return np.where(distance_matrix == 0.0, 1e6, distance_matrix)
示例10: batched_delta_hyp
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import distance_matrix [as 別名]
def batched_delta_hyp(X, n_tries=10, batch_size=1500):
vals = []
for i in tqdm(range(n_tries)):
idx = np.random.choice(len(X), batch_size)
X_batch = X[idx]
distmat = distance_matrix(X_batch, X_batch)
diam = np.max(distmat)
delta_rel = delta_hyp(distmat) / diam
vals.append(delta_rel)
return np.mean(vals), np.std(vals)
示例11: get_delta
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import distance_matrix [as 別名]
def get_delta(loader):
"""
computes delta value for image data by extracting features using VGG network;
input -- data loader for images
"""
vgg = torchvision.models.vgg16(pretrained=True)
vgg_feats = vgg.features
vgg_classifier = nn.Sequential(*list(vgg.classifier.children())[:-1])
vgg_part = nn.Sequential(vgg_feats, Flatten(), vgg_classifier).to(device)
vgg_part.eval()
all_features = []
for i, (batch, _) in enumerate(loader):
with torch.no_grad():
batch = batch.to(device)
all_features.append(vgg_part(batch).detach().cpu().numpy())
all_features = np.concatenate(all_features)
idx = np.random.choice(len(all_features), 1500)
all_features_small = all_features[idx]
dists = distance_matrix(all_features_small, all_features_small)
delta = delta_hyp(dists)
diam = np.max(dists)
return delta, diam
示例12: trimesh_pull_points_numpy
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import distance_matrix [as 別名]
def trimesh_pull_points_numpy(mesh, points):
# preprocess
i_k = mesh.index_key()
fk_fi = {fkey: index for index, fkey in enumerate(mesh.faces())}
vertices = array(mesh.vertices_attributes('xyz'), dtype=float64).reshape((-1, 3))
triangles = array([mesh.face_coordinates(fkey) for fkey in mesh.faces()], dtype=float64)
points = array(points, dtype=float64).reshape((-1, 3))
closest_vis = argmin(distance_matrix(points, vertices), axis=1)
# transformation matrices
# ?
pulled_points = []
# pull every point onto the mesh
for i in range(points.shape[0]):
point = points[i]
closest_vi = closest_vis[i]
closest_vk = i_k[closest_vi]
closest_tris = [fk_fi[fk] for fk in mesh.vertex_faces(closest_vk, ordered=True) if fk is not None]
# process the connected triangles
d, p, c = _find_closest_component(
point,
vertices,
triangles,
closest_tris,
closest_vi
)
pulled_points.append(p)
return pulled_points
# ==============================================================================
# helpers
# ==============================================================================
示例13: create_datasets
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import distance_matrix [as 別名]
def create_datasets(dataset, physical_property, device):
dir_dataset = '../dataset/' + dataset + '/'
"""Initialize atom_dict, in which
each key is an atom type and each value is its index.
"""
atom_dict = defaultdict(lambda: len(atom_dict))
def create_dataset(filename):
print(filename)
"""Load a dataset."""
with open(dir_dataset + filename, 'r') as f:
property_types = f.readline().strip().split()
data_original = f.read().strip().split('\n\n')
"""The physical_property is an energy, HOMO, or LUMO."""
property_index = property_types.index(physical_property)
dataset = []
for data in data_original:
data = data.strip().split('\n')
idx = data[0]
property = float(data[-1].split()[property_index])
"""Load the atoms and their coordinates of a molecular data."""
atoms, atom_coords = [], []
for atom_xyz in data[1:-1]:
atom, x, y, z = atom_xyz.split()
atoms.append(atom)
xyz = [float(v) for v in [x, y, z]]
atom_coords.append(xyz)
"""Create each data with the above defined functions."""
atoms = create_atoms(atoms, atom_dict)
distance_matrix = create_distances(atom_coords)
molecular_size = len(atoms)
"""Transform the above each data of numpy
to pytorch tensor on a device (i.e., CPU or GPU).
"""
atoms = torch.LongTensor(atoms).to(device)
distance_matrix = torch.FloatTensor(distance_matrix).to(device)
property = torch.FloatTensor([[property]]).to(device)
dataset.append((atoms, distance_matrix, molecular_size, property))
return dataset
dataset_train = create_dataset('data_train.txt')
dataset_train, dataset_dev = split_dataset(dataset_train, 0.9)
dataset_test = create_dataset('data_test.txt')
N_atoms = len(atom_dict)
return dataset_train, dataset_dev, dataset_test, N_atoms
示例14: calculate_swept_area_velocities
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import distance_matrix [as 別名]
def calculate_swept_area_velocities(self, local_wind_speed, coord, x, y, z):
"""
This method calculates and returns the wind speeds at each
rotor swept area grid point for the turbine, interpolated from
the flow field grid.
Args:
wind_direction (float): The wind farm wind direction (deg).
local_wind_speed (np.array): The wind speed at each grid point in
the flow field (m/s).
coord (:py:obj:`~.utilities.Vec3`): The coordinate of the turbine.
x (np.array): The x-coordinates of the flow field grid.
y (np.array): The y-coordinates of the flow field grid.
z (np.array): The z-coordinates of the flow field grid.
Returns:
np.array: The wind speed at each rotor grid point
for the turbine (m/s).
"""
u_at_turbine = local_wind_speed
# TODO:
# # PREVIOUS METHOD========================
# # UNCOMMENT IF ANY ISSUE UNCOVERED WITH NEW MOETHOD
# x_grid = x
# y_grid = y
# z_grid = z
# yPts = np.array([point[0] for point in self.grid])
# zPts = np.array([point[1] for point in self.grid])
# # interpolate from the flow field to get the flow field at the grid
# # points
# dist = [np.sqrt((coord.x1 - x_grid)**2 \
# + (coord.x2 + yPts[i] - y_grid) **2 \
# + (self.hub_height + zPts[i] - z_grid)**2) \
# for i in range(len(yPts))]
# idx = [np.where(dist[i] == np.min(dist[i])) for i in range(len(yPts))]
# data = [np.mean(u_at_turbine[idx[i]]) for i in range(len(yPts))]
# # PREVIOUS METHOD========================
# # NEW METHOD========================
# Sort by distance
flow_grid_points = np.column_stack([x.flatten(), y.flatten(), z.flatten()])
# Set up a grid array
y_array = np.array(self.grid)[:, 0] + coord.x2
z_array = np.array(self.grid)[:, 1] + self.hub_height
x_array = np.ones_like(y_array) * coord.x1
grid_array = np.column_stack([x_array, y_array, z_array])
ii = np.argmin(distance_matrix(flow_grid_points, grid_array), axis=0)
# return np.array(data)
return np.array(u_at_turbine.flatten()[ii])
示例15: closest_points_in_cloud_numpy
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import distance_matrix [as 別名]
def closest_points_in_cloud_numpy(points, cloud, threshold=10**7, distances=True, num_nbrs=1):
"""Find the closest points in a point cloud to a set of sample points.
Parameters
----------
points : array, list
The sample points (n,).
cloud : array, list
The cloud points to compare to (n,).
threshold : float
Points are checked within this distance.
distances : bool
Return distance matrix.
Returns
-------
list
Indices of the closest points in the cloud per point in points.
array
Distances between points and closest points in cloud (n x n).
Notes
-----
Items in cloud further from items in points than threshold return zero
distance and will affect the indices returned if not set suitably high.
Examples
--------
>>> a = np.random.rand(4, 3)
>>> b = np.random.rand(4, 3)
>>> indices, distances = closest_points(a, b, distances=True)
[1, 2, 0, 3]
array([[ 1.03821946, 0.66226402, 0.67964346, 0.98877891],
[ 0.4650432 , 0.54484186, 0.36158995, 0.60385484],
[ 0.19562088, 0.73240154, 0.50235761, 0.51439644],
[ 0.84680233, 0.85390316, 0.72154983, 0.50432293]])
"""
from numpy import asarray
from numpy import argmin
from numpy import argpartition
from scipy.spatial import distance_matrix
points = asarray(points).reshape((-1, 3))
cloud = asarray(cloud).reshape((-1, 3))
d_matrix = distance_matrix(points, cloud, threshold=threshold)
if num_nbrs == 1:
indices = argmin(d_matrix, axis=1)
else:
indices = argpartition(d_matrix, num_nbrs, axis=1)
if distances:
return indices, d_matrix
return indices