本文整理匯總了Python中scipy.spatial.distance.pdist方法的典型用法代碼示例。如果您正苦於以下問題:Python distance.pdist方法的具體用法?Python distance.pdist怎麽用?Python distance.pdist使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.spatial.distance
的用法示例。
在下文中一共展示了distance.pdist方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: kernel_matrix
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import pdist [as 別名]
def kernel_matrix(svm_model, original_X):
if (svm_model.svm_kernel == 'polynomial_kernel' or svm_model.svm_kernel == 'soft_polynomial_kernel'):
K = (svm_model.zeta + svm_model.gamma * np.dot(original_X, original_X.T)) ** svm_model.Q
elif (svm_model.svm_kernel == 'gaussian_kernel' or svm_model.svm_kernel == 'soft_gaussian_kernel'):
pairwise_dists = squareform(pdist(original_X, 'euclidean'))
K = np.exp(-svm_model.gamma * (pairwise_dists ** 2))
'''
K = np.zeros((svm_model.data_num, svm_model.data_num))
for i in range(svm_model.data_num):
for j in range(svm_model.data_num):
if (svm_model.svm_kernel == 'polynomial_kernel' or svm_model.svm_kernel == 'soft_polynomial_kernel'):
K[i, j] = Kernel.polynomial_kernel(svm_model, original_X[i], original_X[j])
elif (svm_model.svm_kernel == 'gaussian_kernel' or svm_model.svm_kernel == 'soft_gaussian_kernel'):
K[i, j] = Kernel.gaussian_kernel(svm_model, original_X[i], original_X[j])
'''
return K
示例2: k_nearest_neighbor
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import pdist [as 別名]
def k_nearest_neighbor(self, sequence):
# Calculate dist_matrix
dist_array = pdist(sequence)
dist_matrix = squareform(dist_array)
# Construct tour
new_sequence = [sequence[0]]
current_city = 0
visited_cities = [0]
for i in range(1,len(sequence)):
j = np.random.randint(0,min(len(sequence)-i,self.kNN))
next_city = [index for index in dist_matrix[current_city].argsort() if index not in visited_cities][j]
visited_cities.append(next_city)
new_sequence.append(sequence[next_city])
current_city = next_city
return np.asarray(new_sequence)
# Generate random TSP-TW instance
示例3: coords2sort_order
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import pdist [as 別名]
def coords2sort_order(a2c):
""" Delivers a list of atom indices which generates a near-diagonal overlap for a given set of atom coordinates """
na = a2c.shape[0]
aa2d = squareform(pdist(a2c))
mxd = np.amax(aa2d)+1.0
a = 0
lsa = []
for ia in range(na):
lsa.append(a)
asrt = np.argsort(aa2d[a])
for ja in range(1,na):
b = asrt[ja]
if b not in lsa: break
aa2d[a,b] = aa2d[b,a] = mxd
a = b
return np.array(lsa)
示例4: vote
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import pdist [as 別名]
def vote(vec, tol):
vec = np.sort(vec)
n = np.arange(len(vec))[::-1]
n = n[:, None] - n[None, :] + 1.0
l = squareform(pdist(vec[:, None], 'minkowski', p=1) + 1e-9)
invalid = (n < len(vec) * 0.4) | (l > tol)
if (~invalid).sum() == 0 or len(vec) < tol:
best_fit = np.median(vec)
p_score = 0
else:
l[invalid] = 1e5
n[invalid] = -1
score = n
max_idx = score.argmax()
max_row = max_idx // len(vec)
max_col = max_idx % len(vec)
assert max_col > max_row
best_fit = vec[max_row:max_col+1].mean()
p_score = (max_col - max_row + 1) / len(vec)
l1_score = np.abs(vec - best_fit).mean()
return best_fit, p_score, l1_score
示例5: _get_sorted_db_keypoint_distances
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import pdist [as 別名]
def _get_sorted_db_keypoint_distances(self, N=None):
"""Use a minimum spanning tree heuristic to find the N largest gaps in the
line constituted by the current decision boundary keypoints.
"""
if N == None:
N = self.n_interpolated_keypoints
edges = minimum_spanning_tree(
squareform(pdist(self.decision_boundary_points_2d))
)
edged = np.array(
[
euclidean(
self.decision_boundary_points_2d[u],
self.decision_boundary_points_2d[v],
)
for u, v in edges
]
)
gap_edge_idx = np.argsort(edged)[::-1][: int(N)]
edges = edges[gap_edge_idx]
gap_distances = np.square(edged[gap_edge_idx])
gap_probability_scores = gap_distances / np.sum(gap_distances)
return edges, gap_distances, gap_probability_scores
示例6: _execute_single
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import pdist [as 別名]
def _execute_single(cls, ctx, op):
from scipy.spatial.distance import pdist
inputs, device_id, xp = as_same_device(
[ctx[inp.key] for inp in op.inputs], device=op.device, ret_extra=True)
if xp is cp: # pragma: no cover
raise NotImplementedError('`pdist` does not support running on GPU yet')
with device(device_id):
inputs_iter = iter(inputs)
x = next(inputs_iter)
kw = dict()
if op.p is not None:
kw['p'] = op.p
if op.w is not None:
kw['w'] = next(inputs_iter)
if op.v is not None:
kw['V'] = next(inputs_iter)
if op.vi is not None:
kw['VI'] = next(inputs_iter)
ctx[op.outputs[0].key] = pdist(x, metric=op.metric, **kw)
示例7: single
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import pdist [as 別名]
def single(y):
"""
Perform single/min/nearest linkage on the condensed distance matrix ``y``.
Parameters
----------
y : ndarray
The upper triangular of the distance matrix. The result of
``pdist`` is returned in this form.
Returns
-------
Z : ndarray
The linkage matrix.
See Also
--------
linkage: for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist : pairwise distance metrics
"""
return linkage(y, method='single', metric='euclidean')
示例8: complete
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import pdist [as 別名]
def complete(y):
"""
Perform complete/max/farthest point linkage on a condensed distance matrix.
Parameters
----------
y : ndarray
The upper triangular of the distance matrix. The result of
``pdist`` is returned in this form.
Returns
-------
Z : ndarray
A linkage matrix containing the hierarchical clustering. See
the `linkage` function documentation for more information
on its structure.
See Also
--------
linkage: for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist : pairwise distance metrics
"""
return linkage(y, method='complete', metric='euclidean')
示例9: average
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import pdist [as 別名]
def average(y):
"""
Perform average/UPGMA linkage on a condensed distance matrix.
Parameters
----------
y : ndarray
The upper triangular of the distance matrix. The result of
``pdist`` is returned in this form.
Returns
-------
Z : ndarray
A linkage matrix containing the hierarchical clustering. See
`linkage` for more information on its structure.
See Also
--------
linkage: for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist : pairwise distance metrics
"""
return linkage(y, method='average', metric='euclidean')
示例10: single
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import pdist [as 別名]
def single(y):
"""
Performs single/min/nearest linkage on the condensed distance matrix ``y``
Parameters
----------
y : ndarray
The upper triangular of the distance matrix. The result of
``pdist`` is returned in this form.
Returns
-------
Z : ndarray
The linkage matrix.
See Also
--------
linkage: for advanced creation of hierarchical clusterings.
"""
return linkage(y, method='single', metric='euclidean')
示例11: complete
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import pdist [as 別名]
def complete(y):
"""
Performs complete/max/farthest point linkage on a condensed distance matrix
Parameters
----------
y : ndarray
The upper triangular of the distance matrix. The result of
``pdist`` is returned in this form.
Returns
-------
Z : ndarray
A linkage matrix containing the hierarchical clustering. See
the ``linkage`` function documentation for more information
on its structure.
See Also
--------
linkage
"""
return linkage(y, method='complete', metric='euclidean')
示例12: average
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import pdist [as 別名]
def average(y):
"""
Performs average/UPGMA linkage on a condensed distance matrix
Parameters
----------
y : ndarray
The upper triangular of the distance matrix. The result of
``pdist`` is returned in this form.
Returns
-------
Z : ndarray
A linkage matrix containing the hierarchical clustering. See
the ``linkage`` function documentation for more information
on its structure.
See Also
--------
linkage: for advanced creation of hierarchical clusterings.
"""
return linkage(y, method='average', metric='euclidean')
示例13: _build_kernel
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import pdist [as 別名]
def _build_kernel(x, kernel, gamma=None):
if kernel in {'pearson', 'spearman'}:
if kernel == 'spearman':
x = np.apply_along_axis(rankdata, 1, x)
return np.corrcoef(x)
if kernel in {'cosine', 'normalized_angle'}:
x = 1 - squareform(pdist(x, metric='cosine'))
if kernel == 'normalized_angle':
x = 1 - np.arccos(x, x)/np.pi
return x
if kernel == 'gaussian':
if gamma is None:
gamma = 1 / x.shape[1]
return rbf_kernel(x, gamma=gamma)
if callable(kernel):
return kernel(x)
raise ValueError("Unknown kernel '{0}'.".format(kernel))
示例14: test_euclidean_distances_sym
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import pdist [as 別名]
def test_euclidean_distances_sym(dtype, x_array_constr):
# check that euclidean distances gives same result as scipy pdist
# when only X is provided
rng = np.random.RandomState(0)
X = rng.random_sample((100, 10)).astype(dtype, copy=False)
X[X < 0.8] = 0
expected = squareform(pdist(X))
X = x_array_constr(X)
distances = euclidean_distances(X)
# the default rtol=1e-7 is too close to the float32 precision
# and fails due too rounding errors.
assert_allclose(distances, expected, rtol=1e-6)
assert distances.dtype == dtype
示例15: find_medioid
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import pdist [as 別名]
def find_medioid(self, X, Y):
"""
Find point with minimal distance to all other points.
Parameters
----------
X : array
data set, with N samples x D features.
Y : array
labels to select for which samples to compute distances.
Returns
-------
x : array
medioid
ix : int
index of medioid
"""
# Initiate an array with infinities
A = np.full((X.shape[0],), np.inf)
# Insert sum of distances to other points
A[Y] = np.sum(squareform(pdist(X[Y, :])), axis=1)
# Find the index of the point with the smallest distance
ix = np.argmin(A)
return X[ix, :], ix