當前位置: 首頁>>代碼示例>>Python>>正文


Python distance.cosine方法代碼示例

本文整理匯總了Python中scipy.spatial.distance.cosine方法的典型用法代碼示例。如果您正苦於以下問題:Python distance.cosine方法的具體用法?Python distance.cosine怎麽用?Python distance.cosine使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.spatial.distance的用法示例。


在下文中一共展示了distance.cosine方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_batch_cos_similarities

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cosine [as 別名]
def get_batch_cos_similarities(self, shorttext):
        """ Calculate the score, which is the cosine similarity with the topic vector of the model,
        of the short text against each class labels.

        If neither :func:`~train` nor :func:`~loadmodel` was run, it will raise `ModelNotTrainedException`.

        :param shorttext: short text
        :return: dictionary of scores of the text to all classes
        :raise: ModelNotTrainedException
        :type shorttext: str
        :rtype: dict
        """
        if not self.trained:
            raise ModelNotTrainedException()
        simdict = {}
        for label in self.classtopicvecs:
            simdict[label] = 1 - cosine(self.classtopicvecs[label], self.retrieve_topicvec(shorttext))
        return simdict 
開發者ID:stephenhky,項目名稱:PyShortTextCategorization,代碼行數:20,代碼來源:AutoEncodingTopicModeling.py

示例2: get_embedding_similarities

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cosine [as 別名]
def get_embedding_similarities(embed, embed2 = None, sim_measure = "euclidean", num_top = None):
  n_nodes, dim = embed.shape
  if embed2 is None:
		embed2 = embed

  if num_top is not None: #KD tree with only top similarities computed
		kd_sim = kd_align(embed, embed2, distance_metric = sim_measure, num_top = num_top)
		return kd_sim

  #All pairwise distance computation
  if sim_measure == "cosine":
		similarity_matrix = sklearn.metrics.pairwise.cosine_similarity(embed, embed2)
  else:
		similarity_matrix = sklearn.metrics.pairwise.euclidean_distances(embed, embed2)
		similarity_matrix = np.exp(-similarity_matrix)

  return similarity_matrix

#Split embeddings in half (TODO generalize to different numbers and sizes of networks) 
開發者ID:GemsLab,項目名稱:REGAL,代碼行數:21,代碼來源:alignments.py

示例3: test_cosine_similarity

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cosine [as 別名]
def test_cosine_similarity():
    # Test the cosine_similarity.

    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((3, 4))
    Xcsr = csr_matrix(X)
    Ycsr = csr_matrix(Y)

    for X_, Y_ in ((X, None), (X, Y),
                   (Xcsr, None), (Xcsr, Ycsr)):
        # Test that the cosine is kernel is equal to a linear kernel when data
        # has been previously normalized by L2-norm.
        K1 = pairwise_kernels(X_, Y=Y_, metric="cosine")
        X_ = normalize(X_)
        if Y_ is not None:
            Y_ = normalize(Y_)
        K2 = pairwise_kernels(X_, Y=Y_, metric="linear")
        assert_array_almost_equal(K1, K2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:21,代碼來源:test_pairwise.py

示例4: run_synonym_finding

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cosine [as 別名]
def run_synonym_finding(self, embs, data):
        result = defaultdict(lambda: {})
        for word, suspicious_words in data.items():
            distances = []
            for susp_word, _ in suspicious_words:
                distances.append(1 - distance.cosine(embs.get_vector(susp_word), embs.get_vector(word)))
            guessed_word_index = distances.index(np.min(distances))
            results_for_word = []
            for dist_id, cosine_distance in enumerate(distances):
                d = {}
                d['suspicious_word'] = suspicious_words[dist_id][0]
                d['is_synonym'] = suspicious_words[dist_id][1]
                if dist_id == guessed_word_index:
                    d['hit'] = True
                else:
                    d['hit'] = False
                d['distance'] = cosine_distance
                results_for_word.append(d)
            result[word] = results_for_word
        return dict(result) 
開發者ID:vecto-ai,項目名稱:vecto,代碼行數:22,代碼來源:synonymy_detection.py

示例5: compare_words

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cosine [as 別名]
def compare_words(self, values):
        result = defaultdict(lambda: {})
        distances_to_other_words = defaultdict(lambda: [])
        for word, compared_word in product(values['words'], repeat=2):
            if word == compared_word:
                continue
            distance_between_words = round(1 - distance.cosine(word[1], compared_word[1]), 2)
            distances_to_other_words[word[0]].append([compared_word[0], distance_between_words])
        for word_id, key in enumerate(distances_to_other_words.keys()):
            result_dict = {}
            result_dict['distances'] = distances_to_other_words[key]
            result_dict['is_outlier'] = values['is_outlier'][word_id]
            average = self.compute_average(distances_to_other_words[key])
            result_dict['average'] = round(average, 2)
            if average <= self.threshold:
                result_dict['hit'] = False
            else:
                result_dict['hit'] = True
            result[key] = result_dict
        return dict(result) 
開發者ID:vecto-ai,項目名稱:vecto,代碼行數:22,代碼來源:outliers.py

示例6: single_query

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cosine [as 別名]
def single_query(self, query_id, query_feat, gallery_embeds, query_idx):
        query_dist = []
        for j, feat in enumerate(gallery_embeds):
            cosine_dist = cosine(
                feat.reshape(1, -1), query_feat.reshape(1, -1))
            query_dist.append(cosine_dist)
        query_dist = np.array(query_dist)

        order = np.argsort(query_dist)
        single_recall = dict()

        print(self.query_id2idx[query_id])
        for k in self.topks:
            retrieved_idxes = order[:k]
            tp = 0
            relevant_num = len(self.gallery_id2idx[query_id])
            for idx in retrieved_idxes:
                retrieved_id = self.gallery_dict[idx]
                if query_id == retrieved_id:
                    tp += 1

            single_recall[k] = float(tp) / relevant_num
        return single_recall 
開發者ID:open-mmlab,項目名稱:mmfashion,代碼行數:25,代碼來源:retrieval_eval.py

示例7: show_retrieved_images

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cosine [as 別名]
def show_retrieved_images(self, query_feat, gallery_embeds):
        query_dist = []

        for i, feat in enumerate(gallery_embeds):
            cosine_dist = cosine(
                feat.reshape(1, -1), query_feat.reshape(1, -1))
            query_dist.append(cosine_dist)

        query_dist = np.array(query_dist)
        order = np.argsort(query_dist)

        for k in self.topks:
            retrieved_idxes = order[:k]
            for idx in retrieved_idxes:
                retrieved_id = self.gallery_dict[idx]
                print('retrieved id', retrieved_id) 
開發者ID:open-mmlab,項目名稱:mmfashion,代碼行數:18,代碼來源:retrieval_eval.py

示例8: get_best_label

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cosine [as 別名]
def get_best_label(label_list,num):
    topic_ls = get_topic_lg(topic_list[num])
    val_dict = {}
    for item in label_list:
        trigrams = [item[i:i+3] for i in range(0, len(item) - 2)] #Extracting letter trigram for label
        label_cnt = Counter(trigrams)
        total = sum(label_cnt.values(), 0.0)
        for key in label_cnt:
            label_cnt[key] /= total
        tot_keys = list(set(topic_ls.keys() + label_cnt.keys()))
        listtopic = []
        listlabel = []
        for elem in tot_keys:
            if elem in topic_ls:
                listtopic.append(topic_ls[elem])
            else:
                listtopic.append(0.0)
            if elem in label_cnt:
                listlabel.append(label_cnt[elem])
            else:
                listlabel.append(0.0)
        val = 1 - cosine(np.array(listtopic),np.array(listlabel))   # Cosine Similarity
        val_dict[item] = val
    list_sorted=sorted(val_dict.items(), key=lambda x:x[1], reverse = True) # Sorting the labels by rank
    return [i[0] for i in list_sorted[:int(args.num_unsup_labels)]] 
開發者ID:sb1992,項目名稱:NETL-Automatic-Topic-Labelling-,代碼行數:27,代碼來源:unsupervised_labels.py

示例9: pw_score_cosine

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cosine [as 別名]
def pw_score_cosine(self, s1 : ClassId, s2 : ClassId) -> SimScore:
        """
        Cosine similarity of two subjects

        Arguments
        ---------
        s1 : str
            class id


        Return
        ------
        number
            A number between 0 and 1
        """
        df = self.assoc_df
        slice1 = df.loc[s1].values
        slice2 = df.loc[s2].values
        return 1 - cosine(slice1, slice2) 
開發者ID:biolink,項目名稱:ontobio,代碼行數:21,代碼來源:semsearch.py

示例10: score_cosine

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cosine [as 別名]
def score_cosine(self, term1, term2, **kwargs):

        """
        Compute a weighting score based on the cosine distance between the
        kernel density estimates of two terms.

        Args:
            term1 (str)
            term2 (str)

        Returns: float
        """

        t1_kde = self.kde(term1, **kwargs)
        t2_kde = self.kde(term2, **kwargs)

        return 1-distance.cosine(t1_kde, t2_kde) 
開發者ID:davidmcclure,項目名稱:textplot,代碼行數:19,代碼來源:text.py

示例11: test_compute_distance_matrix_loo_cosine

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cosine [as 別名]
def test_compute_distance_matrix_loo_cosine(self):
    if not tf.executing_eagerly():
      self.skipTest("Test requires eager mode.")
    np.random.seed(seed=self.random_seed)
    x_train = np.random.rand(self.train_samples, self.dim)

    d = utils.compute_distance_matrix_loo(x_train, measure="cosine")
    self.assertEqual(d.shape, (self.train_samples, self.train_samples))

    for i in range(self.train_samples):
      for j in range(self.train_samples):
        if i == j:
          self.assertEqual(float("inf"), d[i, j])
        else:
          d_ij = spdist.cosine(x_train[i, :], x_train[j, :])
          self.assertAlmostEqual(d_ij, d[i, j], places=5) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:18,代碼來源:utils_test.py

示例12: is_word_embed_match

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cosine [as 別名]
def is_word_embed_match(self, mention_x: MentionDataLight, mention_y: MentionDataLight):
        """
        Check if input mentions Word Embedding cosine distance below above 0.65

        Args:
            mention_x: MentionDataLight
            mention_y: MentionDataLight

        Returns:
            bool
        """
        match_result = False
        x_embed = self.embedding.get_head_feature_vector(mention_x)
        y_embed = self.embedding.get_head_feature_vector(mention_y)
        # make sure words are not 'unk/None/0'
        if x_embed is not None and y_embed is not None:
            dist = cos(x_embed, y_embed)
            if not math.isnan(dist):
                sim = 1 - dist
                if sim >= self.accepted_dist:
                    match_result = True

        return match_result 
開發者ID:NervanaSystems,項目名稱:nlp-architect,代碼行數:25,代碼來源:word_embedding_relation_extraction.py

示例13: update

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cosine [as 別名]
def update(self, feature_vec):
        if len(self.clusters) < self.feature_len:
            self.clusters.append(feature_vec)
            self.clusters_sizes.append(1)
        elif sum(self.clusters_sizes) < 2*self.feature_len:
            idx = random.randint(0, self.feature_len - 1)
            self.clusters_sizes[idx] += 1
            self.clusters[idx] += (feature_vec - self.clusters[idx]) / \
                                            self.clusters_sizes[idx]
        else:
            distances = cdist(feature_vec.reshape(1, -1),
                              np.array(self.clusters).reshape(len(self.clusters), -1), 'cosine')
            nearest_idx = np.argmin(distances)
            self.clusters_sizes[nearest_idx] += 1
            self.clusters[nearest_idx] += (feature_vec - self.clusters[nearest_idx]) / \
                                            self.clusters_sizes[nearest_idx] 
開發者ID:opencv,項目名稱:open_model_zoo,代碼行數:18,代碼來源:sct.py

示例14: _compute_mct_distance_matrix

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cosine [as 別名]
def _compute_mct_distance_matrix(self, all_tracks):
        distance_matrix = THE_BIGGEST_DISTANCE * np.eye(len(all_tracks), dtype=np.float32)
        for i, track1 in enumerate(all_tracks):
            for j, track2 in enumerate(all_tracks):
                if j >= i:
                    break
                if track1.id != track2.id and track1.cam_id != track2.cam_id and \
                        len(track1) > self.time_window and len(track2) > self.time_window and \
                        track1.f_avg.is_valid() and track2.f_avg.is_valid():
                    if not track1.f_orient.is_valid():
                        f_complex_dist = clusters_distance(track1.f_clust, track2.f_clust)
                    else:
                        f_complex_dist = track1.f_orient.dist_to_other(track2.f_orient)
                    f_avg_dist = 0.5 * cosine(track1.f_avg.get(), track2.f_avg.get())
                    distance_matrix[i, j] = min(f_avg_dist, f_complex_dist)
                else:
                    distance_matrix[i, j] = THE_BIGGEST_DISTANCE
        return distance_matrix + np.transpose(distance_matrix) 
開發者ID:opencv,項目名稱:open_model_zoo,代碼行數:20,代碼來源:mct.py

示例15: test_transform

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cosine [as 別名]
def test_transform(self):
        """ Test that training the model brings the document vector
            closer to the vectors for words in the sentence"""
        model = Document2Vec(w2v_file)
        model.workers = 1
        corpus = _generate_corpus(model)
        # vectors = model.fit_transform(corpus)
        # Get the first word in the corpus
        vectors = model.transform(corpus)
        word = next(corpus.__iter__()).words[0]
        sent0_vector = vectors[0, :]
        sim = cosine(sent0_vector, model[word])
        self.assertGreater(sim, 0.15) 
開發者ID:cemoody,項目名稱:Document2Vec,代碼行數:15,代碼來源:test_document2vec.py


注:本文中的scipy.spatial.distance.cosine方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。