當前位置: 首頁>>代碼示例>>Python>>正文


Python distance.cityblock方法代碼示例

本文整理匯總了Python中scipy.spatial.distance.cityblock方法的典型用法代碼示例。如果您正苦於以下問題:Python distance.cityblock方法的具體用法?Python distance.cityblock怎麽用?Python distance.cityblock使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.spatial.distance的用法示例。


在下文中一共展示了distance.cityblock方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: manhattan_distance

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cityblock [as 別名]
def manhattan_distance(vec1, vec2, weights=None):
    """
    Manhattan distance.

    Args:
        vec1 (list): Vector 1. List of integer or float.
        vec2 (list): Vector 2. List of integer or float. It should have the same length to vec1.
        weights (list): Weights for each value in vectors. If it's None, all weights will be 1.0. Defaults to None.

    Returns:
        float: Manhattan distance.
    """
    utils.check_for_none(vec1, vec2)
    utils.check_for_type(list, vec1, vec2)
    if weights:
        utils.check_for_type(list, weights)
    if len(vec1) != len(vec2):
        raise ValueError('vec1 and vec2 should have same length')

    return cityblock(vec1, vec2, weights) 
開發者ID:usc-isi-i2,項目名稱:rltk,代碼行數:22,代碼來源:distance.py

示例2: __calc_distances__

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cityblock [as 別名]
def __calc_distances__(self, v1s, v2s, is_sparse=True):
        if is_sparse:
            dcosine     = np.array([cosine(x.toarray(), y.toarray())       for (x, y) in zip(v1s, v2s)]).reshape((-1,1))
            dcityblock  = np.array([cityblock(x.toarray(), y.toarray())    for (x, y) in zip(v1s, v2s)]).reshape((-1,1))
            dcanberra  = np.array([canberra(x.toarray(), y.toarray())     for (x, y) in zip(v1s, v2s)]).reshape((-1,1))
            deuclidean = np.array([euclidean(x.toarray(), y.toarray())    for (x, y) in zip(v1s, v2s)]).reshape((-1,1))
            dminkowski  = np.array([minkowski(x.toarray(), y.toarray(), 3) for (x, y) in zip(v1s, v2s)]).reshape((-1,1))
            dbraycurtis = np.array([braycurtis(x.toarray(), y.toarray())   for (x, y) in zip(v1s, v2s)]).reshape((-1,1))

            dskew_q1 = [skew(x.toarray().ravel()) for x in v1s]
            dskew_q2 = [skew(x.toarray().ravel()) for x in v2s]
            dkur_q1  = [kurtosis(x.toarray().ravel()) for x in v1s]
            dkur_q2  = [kurtosis(x.toarray().ravel()) for x in v2s]

            dskew_diff = np.abs(np.array(dskew_q1) - np.array(dskew_q2)).reshape((-1,1))
            dkur_diff  = np.abs(np.array(dkur_q1) - np.array(dkur_q2)).reshape((-1,1))
        else:
            dcosine     = np.array([cosine(x, y)       for (x, y) in zip(v1s, v2s)]).reshape((-1,1))
            dcityblock  = np.array([cityblock(x, y)    for (x, y) in zip(v1s, v2s)]).reshape((-1,1))
            dcanberra  = np.array([canberra(x, y)     for (x, y) in zip(v1s, v2s)]).reshape((-1,1))
            deuclidean = np.array([euclidean(x, y)    for (x, y) in zip(v1s, v2s)]).reshape((-1,1))
            dminkowski  = np.array([minkowski(x, y, 3) for (x, y) in zip(v1s, v2s)]).reshape((-1,1))
            dbraycurtis = np.array([braycurtis(x, y)   for (x, y) in zip(v1s, v2s)]).reshape((-1,1))

            dskew_q1 = [skew(x) for x in v1s]
            dskew_q2 = [skew(x) for x in v2s]
            dkur_q1  = [kurtosis(x) for x in v1s]
            dkur_q2  = [kurtosis(x) for x in v2s]

            dskew_diff = np.abs(np.array(dskew_q1) - np.array(dskew_q2)).reshape((-1,1))
            dkur_diff  = np.abs(np.array(dkur_q1) - np.array(dkur_q2)).reshape((-1,1))
        return np.hstack((dcosine,dcityblock,dcanberra,deuclidean,dminkowski,dbraycurtis,dskew_diff,dkur_diff)) 
開發者ID:lampts,項目名稱:wsdm19cup,代碼行數:34,代碼來源:make_handcrafted_33_features.py

示例3: test_pairwise_distances_chunked

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cityblock [as 別名]
def test_pairwise_distances_chunked():
    # Test the pairwise_distance helper function.
    rng = np.random.RandomState(0)
    # Euclidean distance should be equivalent to calling the function.
    X = rng.random_sample((400, 4))
    check_pairwise_distances_chunked(X, None, working_memory=1,
                                     metric='euclidean')
    # Test small amounts of memory
    for power in range(-16, 0):
        check_pairwise_distances_chunked(X, None, working_memory=2 ** power,
                                         metric='euclidean')
    # X as list
    check_pairwise_distances_chunked(X.tolist(), None, working_memory=1,
                                     metric='euclidean')
    # Euclidean distance, with Y != X.
    Y = rng.random_sample((200, 4))
    check_pairwise_distances_chunked(X, Y, working_memory=1,
                                     metric='euclidean')
    check_pairwise_distances_chunked(X.tolist(), Y.tolist(), working_memory=1,
                                     metric='euclidean')
    # absurdly large working_memory
    check_pairwise_distances_chunked(X, Y, working_memory=10000,
                                     metric='euclidean')
    # "cityblock" uses scikit-learn metric, cityblock (function) is
    # scipy.spatial.
    check_pairwise_distances_chunked(X, Y, working_memory=1,
                                     metric='cityblock')
    # Test that a value error is raised if the metric is unknown
    assert_raises(ValueError, next,
                  pairwise_distances_chunked(X, Y, metric="blah"))

    # Test precomputed returns all at once
    D = pairwise_distances(X)
    gen = pairwise_distances_chunked(D,
                                     working_memory=2 ** -16,
                                     metric='precomputed')
    assert isinstance(gen, GeneratorType)
    assert next(gen) is D
    assert_raises(StopIteration, next, gen) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:41,代碼來源:test_pairwise.py

示例4: __init__

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cityblock [as 別名]
def __init__(self, rad):
        super().__init__(rad)
        self.mask_ = np.zeros((2*rad+1, 2*rad+1, 2*rad+1), dtype=np.bool)
        for r1 in range(2*self.rad+1):
            for r2 in range(2*self.rad+1):
                for r3 in range(2*self.rad+1):
                    if(cityblock((r1, r2, r3),
                                 (self.rad, self.rad, self.rad)) <= self.rad):
                        self.mask_[r1, r2, r3] = True 
開發者ID:brainiak,項目名稱:brainiak,代碼行數:11,代碼來源:searchlight.py

示例5: test_cityblock_batch

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cityblock [as 別名]
def test_cityblock_batch(random_matrix):
    X = random_matrix
    y = X[np.random.choice(X.shape[0])]

    batch_dists = cityblock_batch(X, y)
    single_dists = np.array([cityblock(x, y) for x in X]).reshape(X.shape[0], -1)

    assert np.allclose(batch_dists, single_dists) 
開發者ID:SeldonIO,項目名稱:alibi-detect,代碼行數:10,代碼來源:test_distance.py

示例6: getDistLambda

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cityblock [as 別名]
def getDistLambda(metric):
    if (metric == "manhattan"):
        return lambda x,y : distance.cityblock(x,y)
    elif (metric == "cosine"):
        return lambda x,y : distance.cosine(x,y)
    else:
        return lambda x,y : distance.euclidean(x,y) 
開發者ID:lbenning,項目名稱:Load-Forecasting,代碼行數:9,代碼來源:clustering.py

示例7: get_distance_function

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cityblock [as 別名]
def get_distance_function(requested_metric):
    """
    This function returns a specified distance function.

    Paramters
    ---------

    requested_metric: str
        Distance function. Can be any function in: https://docs.scipy.org/doc/scipy/reference/spatial.distance.html.

    Returns
    -------

    requested_metric : distance function

    """
    distance_options = {
        'braycurtis': distance.braycurtis,
        'canberra': distance.canberra,
        'chebyshev': distance.chebyshev,
        'cityblock': distance.cityblock,
        'correlation': distance.correlation,
        'cosine': distance.cosine,
        'euclidean': distance.euclidean,
        'sqeuclidean': distance.sqeuclidean,
        'dice': distance.dice,
        'hamming': distance.hamming,
        'jaccard': distance.jaccard,
        'kulsinski': distance.kulsinski,
        'matching': distance.matching,
        'rogerstanimoto': distance.rogerstanimoto,
        'russellrao': distance.russellrao,
        'sokalmichener': distance.sokalmichener,
        'sokalsneath': distance.sokalsneath,
        'yule': distance.yule,
    }
    if requested_metric in distance_options:
        return distance_options[requested_metric]
    else:
        raise ValueError('Distance function cannot be found.') 
開發者ID:wiheto,項目名稱:teneto,代碼行數:42,代碼來源:utils.py

示例8: manhattan_distance

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cityblock [as 別名]
def manhattan_distance(self, privileged=None, returned=False):
        """Compute the average Manhattan distance between the samples from the
        two datasets.
        """
        condition = self._to_condition(privileged)
        distance, mask = utils.compute_distance(self.dataset.features,
            self.distorted_dataset.features, self.dataset.protected_attributes,
            self.dataset.protected_attribute_names, dist_fun=scdist.cityblock,
            condition=condition)
        if returned:
            return distance, self.dataset.instance_weights[mask]
        return distance 
開發者ID:IBM,項目名稱:AIF360,代碼行數:14,代碼來源:sample_distortion_metric.py

示例9: get_node_distance_matrix

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cityblock [as 別名]
def get_node_distance_matrix(self, datapoint, som_array):
        """Get distance of datapoint and node using Euclidean distance.

        Parameters
        ----------
        datapoint : np.array, shape=(X.shape[1])
            Datapoint = one row of the dataset `X`
        som_array : np.array
            Weight vectors of the SOM,
            shape = (self.n_rows, self.n_columns, X.shape[1])

        Returns
        -------
        distmat : np.array of float
            Distance between datapoint and each SOM node

        """
        # algorithms on the full matrix
        if self.distance_metric == "euclidean":
            return np.linalg.norm(som_array - datapoint, axis=2)

        # node-by-node algorithms
        distmat = np.zeros((self.n_rows, self.n_columns))
        if self.distance_metric == "manhattan":
            for node in self.node_list_:
                distmat[node] = dist.cityblock(
                    som_array[node[0], node[1]], datapoint)

        elif self.distance_metric == "mahalanobis":
            for node in self.node_list_:
                som_node = som_array[node[0], node[1]]
                cov = np.cov(np.stack((datapoint, som_node), axis=0),
                             rowvar=False)
                cov_pinv = np.linalg.pinv(cov)   # pseudo-inverse
                distmat[node] = dist.mahalanobis(
                    datapoint, som_node, cov_pinv)

        elif self.distance_metric == "tanimoto":
            # Note that this is a binary distance measure.
            # Therefore, the vectors have to be converted.
            # Source: Melssen 2006, Supervised Kohonen networks for
            #         classification problems
            # VERY SLOW ALGORITHM!!!
            threshold = 0.5
            for node in self.node_list_:
                som_node = som_array[node[0], node[1]]
                distmat[node] = dist.rogerstanimoto(
                    binarize(datapoint.reshape(1, -1), threshold, copy=True),
                    binarize(som_node.reshape(1, -1), threshold, copy=True))

        return distmat 
開發者ID:felixriese,項目名稱:susi,代碼行數:53,代碼來源:SOMClustering.py

示例10: sliced_wasserstein

# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cityblock [as 別名]
def sliced_wasserstein(PD1, PD2, M=50):
    """ Implementation of Sliced Wasserstein distance as described in 
        Sliced Wasserstein Kernel for Persistence Diagrams by Mathieu Carriere, Marco Cuturi, Steve Oudot (https://arxiv.org/abs/1706.03358)


        Parameters
        -----------
        
        PD1: np.array size (m,2)
            Persistence diagram
        PD2: np.array size (n,2)
            Persistence diagram
        M: int, default is 50
            Iterations to run approximation.

        Returns
        --------
        sw: float
            Sliced Wasserstein distance between PD1 and PD2
    """

    diag_theta = np.array(
        [np.cos(0.25 * np.pi), np.sin(0.25 * np.pi)], dtype=np.float32
    )

    l_theta1 = [np.dot(diag_theta, x) for x in PD1]
    l_theta2 = [np.dot(diag_theta, x) for x in PD2]

    if (len(l_theta1) != PD1.shape[0]) or (len(l_theta2) != PD2.shape[0]):
        raise ValueError("The projected points and origin do not match")

    PD_delta1 = [[np.sqrt(x ** 2 / 2.0)] * 2 for x in l_theta1]
    PD_delta2 = [[np.sqrt(x ** 2 / 2.0)] * 2 for x in l_theta2]

    # i have the input now to compute the sw
    sw = 0
    theta = 0.5
    step = 1.0 / M
    for i in range(M):
        l_theta = np.array(
            [np.cos(theta * np.pi), np.sin(theta * np.pi)], dtype=np.float32
        )

        V1 = [np.dot(l_theta, x) for x in PD1] + [np.dot(l_theta, x) for x in PD_delta2]

        V2 = [np.dot(l_theta, x) for x in PD2] + [np.dot(l_theta, x) for x in PD_delta1]

        sw += step * cityblock(sorted(V1), sorted(V2))
        theta += step

    return sw 
開發者ID:scikit-tda,項目名稱:persim,代碼行數:53,代碼來源:sliced_wasserstein.py


注:本文中的scipy.spatial.distance.cityblock方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。