本文整理匯總了Python中scipy.spatial.distance.cdist方法的典型用法代碼示例。如果您正苦於以下問題:Python distance.cdist方法的具體用法?Python distance.cdist怎麽用?Python distance.cdist使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.spatial.distance
的用法示例。
在下文中一共展示了distance.cdist方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: kernel_matrix_xX
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cdist [as 別名]
def kernel_matrix_xX(svm_model, original_x, original_X):
if (svm_model.svm_kernel == 'polynomial_kernel' or svm_model.svm_kernel == 'soft_polynomial_kernel'):
K = (svm_model.zeta + svm_model.gamma * np.dot(original_x, original_X.T)) ** svm_model.Q
elif (svm_model.svm_kernel == 'gaussian_kernel' or svm_model.svm_kernel == 'soft_gaussian_kernel'):
K = np.exp(-svm_model.gamma * (cdist(original_X, np.atleast_2d(original_x), 'euclidean').T ** 2)).ravel()
'''
K = np.zeros((svm_model.data_num, svm_model.data_num))
for i in range(svm_model.data_num):
for j in range(svm_model.data_num):
if (svm_model.svm_kernel == 'polynomial_kernel' or svm_model.svm_kernel == 'soft_polynomial_kernel'):
K[i, j] = Kernel.polynomial_kernel(svm_model, original_x, original_X[j])
elif (svm_model.svm_kernel == 'gaussian_kernel' or svm_model.svm_kernel == 'soft_gaussian_kernel'):
K[i, j] = Kernel.gaussian_kernel(svm_model, original_x, original_X[j])
'''
return K
示例2: __init__
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cdist [as 別名]
def __init__(self, cities, **kwargs):
"""
A two-dimensional traveling salesman problem (TSP)
Parameters
----------
cities : numpy.array
The cities with 2-dimensional coordinates provided by a matrix where where city is represented by a row.
"""
n_cities, _ = cities.shape
self.cities = cities
self.D = cdist(cities, cities)
super(TravelingSalesman, self).__init__(
n_var=n_cities,
n_obj=1,
xl=0,
xu=n_cities,
type_var=np.int,
elementwise_evaluation=True,
**kwargs
)
示例3: vna
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cdist [as 別名]
def vna(self, coords, **kw):
"""
Compute the neutral-atom potential V_NA(coords) for a set of Cartesian
coordinates coords.
The subroutine could be also used for computing the non-linear core
corrections or some other atom-centered fields.
"""
sp2v = kw['sp2v'] if 'sp2v' in kw else self.ao_log.sp2vna
sp2rcut = kw['sp2rcut'] if 'sp2rcut' in kw else self.ao_log.sp2rcut_vna
atom2coord = kw['atom2coord'] if 'atom2coord' in kw else self.atom2coord
nc = coords.shape[0]
vna = np.zeros(nc)
for ia,(R,sp) in enumerate(zip(atom2coord, self.atom2sp)):
if sp2v[sp] is None: # This can be done better via preparation of a special atom2sp excluding ghost atoms
continue
#print(__name__, ia, sp, sp2rcut[sp])
dd = cdist(R.reshape((1,3)), coords).reshape(nc)
vnaa = self.ao_log.interp_rr(sp2v[sp], dd, rcut=sp2rcut[sp])
vna = vna + vnaa
return vna
示例4: _similarity_smooth
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cdist [as 別名]
def _similarity_smooth(presented, recalled, features, distance):
lists = presented.index.get_values()
res = np.empty((len(lists), len(features), recalled.iloc[0].shape[0], presented.iloc[0].shape[0]))*np.nan
for li, l in enumerate(lists):
p_list = presented.loc[l]
r_list = recalled.loc[l]
for i, feature in enumerate(features):
get_feature = lambda x: np.array(x[feature]) if np.array(pd.notna(x['item'])).any() else np.nan
p = np.vstack(p_list.apply(get_feature).get_values())
r = r_list.dropna().apply(get_feature).get_values()
r = np.vstack(list(filter(lambda x: x is not np.nan, r)))
tmp = 1 - cdist(r, p, distance)
res[li, i, :tmp.shape[0], :] = tmp
if distance == 'correlation':
return np.nanmean(res, 1)
else:
return np.mean(res, 1)
示例5: _cold_start_initialize
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cdist [as 別名]
def _cold_start_initialize(self):
# Initialize the models for the untrained arms with the data from the most similar arm
for arm in self.untrained_arms:
distances = {}
for n in self.arms:
if n not in self.untrained_arms:
distances[n] = cdist(np.asarray([self.features[n]]), np.asarray([self.features[arm]]),
metric='cosine')
# Identify the closest arm
closest_arm = min(distances, key=distances.get)
print('Cold Start Arm:', arm, 'Closest arm:', closest_arm)
# Set the arm to use the values of the closets arm
self.arm_to_model[arm].beta = self.arm_to_model[closest_arm].beta.copy()
self.arm_to_model[arm].A = self.arm_to_model[closest_arm].A.copy()
self.arm_to_model[arm].A_inv = self.arm_to_model[closest_arm].A_inv.copy()
self.arm_to_model[arm].Xty = self.arm_to_model[closest_arm].Xty.copy()
self.untrained_arms.remove(arm)
示例6: compute_pairwise_distances
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cdist [as 別名]
def compute_pairwise_distances(first_xyz, second_xyz):
"""Computes pairwise distances between two molecules.
Takes an input (m, 3) and (n, 3) numpy arrays of 3D coords of
two molecules respectively, and outputs an m x n numpy
array of pairwise distances in Angstroms between the first and
second molecule. entry (i,j) is dist between the i"th
atom of first molecule and the j"th atom of second molecule.
Parameters
----------
first_xyz: np.ndarray
Of shape (m, 3)
seocnd_xyz: np.ndarray
Of shape (n, 3)
Returns
-------
np.ndarray of shape (m, n)
"""
pairwise_distances = cdist(first_xyz, second_xyz, metric='euclidean')
return pairwise_distances
示例7: execute
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cdist [as 別名]
def execute(cls, ctx, op):
from scipy.spatial.distance import cdist
inputs, device_id, xp = as_same_device(
[ctx[inp.key] for inp in op.inputs], device=op.device, ret_extra=True)
if xp is cp: # pragma: no cover
raise NotImplementedError('`cdist` does not support running on GPU yet')
with device(device_id):
inputs_iter = iter(inputs)
xa = next(inputs_iter)
xb = next(inputs_iter)
kw = dict()
if op.p is not None:
kw['p'] = op.p
if op.w is not None:
kw['w'] = next(inputs_iter)
if op.v is not None:
kw['V'] = next(inputs_iter)
if op.vi is not None:
kw['VI'] = next(inputs_iter)
ctx[op.outputs[0].key] = cdist(xa, xb, metric=op.metric, **kw)
示例8: tracklet_classify
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cdist [as 別名]
def tracklet_classify(A, pca, D, knn, clf_coding):
encode_fea = np.zeros((len(A),len(D)))
for n in range(len(A)):
pca_fea = pca.transform(A[n])
dist = distance.cdist(pca_fea, D, 'euclidean')
x = np.zeros((len(pca_fea),len(D)))
for k in range(len(dist)):
sort_idx = np.argsort(dist[k,:])
temp_D = D[sort_idx[0:knn],:]
temp_coder = SparseCoder(dictionary=temp_D, transform_n_nonzero_coefs=10,
transform_alpha=0.05, transform_algorithm='lasso_lars')
#import pdb; pdb.set_trace()
xx = np.zeros((1,D.shape[1]))
xx[:,:] = pca_fea[k,:]
temp_x = temp_coder.transform(xx)
x[k,sort_idx[0:knn]] = temp_x
encode_fea[n,:] = np.max(x, axis=0)
pred_set_label = clf_coding.predict(encode_fea)
return pred_set_label
示例9: gen_gausprocess_se
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cdist [as 別名]
def gen_gausprocess_se(ntrain, ntest, noise=1., lenscale=1., scale=1.,
xmin=-10, xmax=10):
"""
Generate a random (noisy) draw from a Gaussian Process with a RBF kernel.
"""
# Xtrain = np.linspace(xmin, xmax, ntrain)[:, np.newaxis]
Xtrain = np.random.rand(ntrain)[:, np.newaxis] * (xmin - xmax) - xmin
Xtest = np.linspace(xmin, xmax, ntest)[:, np.newaxis]
Xcat = np.vstack((Xtrain, Xtest))
K = scale * np.exp(-cdist(Xcat, Xcat, metric='sqeuclidean') /
(2 * lenscale**2))
U, S, V = np.linalg.svd(K)
L = U.dot(np.diag(np.sqrt(S))).dot(V)
f = np.random.randn(ntrain + ntest).dot(L)
ytrain = f[0:ntrain] + np.random.randn(ntrain) * noise
ftest = f[ntrain:]
return Xtrain, ytrain, Xtest, ftest
示例10: transform
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cdist [as 別名]
def transform(self, X, lenscale=None):
"""
Apply the RBF to X.
Parameters
----------
X: ndarray
(N, d) array of observations where N is the number of samples, and
d is the dimensionality of X.
lenscale: scalar or ndarray, optional
scalar or array of shape (d,) length scales (one for each dimension
of X). If not input, this uses the value of the initial length
scale.
Returns
-------
ndarray:
of shape (N, D) where D is number of RBF centres.
"""
N, d = X.shape
lenscale = self._check_dim(d, lenscale)
den = (2 * lenscale**2)
return np.exp(- cdist(X / den, self.C / den, 'sqeuclidean'))
示例11: _spatial_sort
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cdist [as 別名]
def _spatial_sort(glyph):
from scipy.spatial.distance import cdist
from numpy import argsort
from numpy import argmin
curr = argmin(glyph[:,0])
visited = set([curr])
order = [curr]
dd = cdist(glyph, glyph)
while len(visited)<len(glyph):
row = dd[curr,:]
for i in argsort(row):
if row[i]<=0.0 or i==curr or i in visited:
continue
order.append(i)
visited.add(i)
break
glyph[:,:] = glyph[order,:]
示例12: analysis_KMeans
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cdist [as 別名]
def analysis_KMeans():
mean_distortions = []
K = len(labels_idx)
K_range = range(320, 1000)
for k in K_range:
print("Cluster k is {}".format(k))
kmeans_model = KMeans(n_clusters=k, init="k-means++", n_jobs=-1)
kmeans_model.fit(np_features)
t_distortions = sum(
np.min(cdist(np_features, kmeans_model.cluster_centers_, 'euclidean'), axis=1)) / np_features.shape[0]
mean_distortions.append(t_distortions)
with open("./kmeans_cluster.csv", "a+") as wh:
for idx in range(len(K_range)):
wh.write("{},{}\n".format(K_range[idx], mean_distortions[idx]))
# plt.plot(K_range, mean_distortions, 'bx-')
# plt.xlabel('k')
# plt.ylabel(u'Avgerage distortion degree')
# plt.title(u'Elbows rule to select the best K value')
# plt.savefig("kmeans_cluster.png")
示例13: _find_site_neighbors
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cdist [as 別名]
def _find_site_neighbors(site_locs, n_neighbors, shank_map):
from scipy.spatial.distance import cdist
if np.unique(shank_map).size <= 1:
pass
n_sites = site_locs.shape[0]
n_neighbors = int(min(n_neighbors, n_sites))
neighbors = np.zeros((n_sites, n_neighbors), dtype=np.int)
for i in range(n_sites):
i_loc = site_locs[i, :][np.newaxis, :]
dists = cdist(i_loc, site_locs).ravel()
neighbors[i, :] = dists.argsort()[:n_neighbors]
return neighbors
示例14: tsne_to_grid
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cdist [as 別名]
def tsne_to_grid(X_2d):
from lapjv import lapjv
from scipy.spatial.distance import cdist
out_dim = np.sqrt(len(X_2d))
out_dim = int(out_dim)
to_plot = np.square(out_dim)
grid = np.dstack(np.meshgrid(np.linspace(0, 1, out_dim), np.linspace(0, 1, out_dim))).reshape(-1, 2)
cost_matrix = cdist(grid, X_2d[:to_plot], "sqeuclidean").astype(np.float32)
cost_matrix = cost_matrix * (100000 / cost_matrix.max())
row_asses, col_asses, _ = lapjv(cost_matrix)
grid_jv = grid[col_asses]
return grid_jv, to_plot
# out = np.ones((out_dim*out_res, out_dim*out_res, 3))
# to_plot = np.square(out_dim)
# for pos, img in zip(grid_jv, img_collection[0:to_plot]):
# h_range = int(np.floor(pos[0]* (out_dim - 1) * out_res))
# w_range = int(np.floor(pos[1]* (out_dim - 1) * out_res))
# out[h_range:h_range + out_res, w_range:w_range + out_res] = image.img_to_array(img)
# im = image.array_to_img(out)
# im.save(out_dir + out_name, quality=100)
示例15: test_euclidean_distances
# 需要導入模塊: from scipy.spatial import distance [as 別名]
# 或者: from scipy.spatial.distance import cdist [as 別名]
def test_euclidean_distances(dtype, x_array_constr, y_array_constr):
# check that euclidean distances gives same result as scipy cdist
# when X and Y != X are provided
rng = np.random.RandomState(0)
X = rng.random_sample((100, 10)).astype(dtype, copy=False)
X[X < 0.8] = 0
Y = rng.random_sample((10, 10)).astype(dtype, copy=False)
Y[Y < 0.8] = 0
expected = cdist(X, Y)
X = x_array_constr(X)
Y = y_array_constr(Y)
distances = euclidean_distances(X, Y)
# the default rtol=1e-7 is too close to the float32 precision
# and fails due too rounding errors.
assert_allclose(distances, expected, rtol=1e-6)
assert distances.dtype == dtype