本文整理匯總了Python中scipy.spatial.cKDTree方法的典型用法代碼示例。如果您正苦於以下問題:Python spatial.cKDTree方法的具體用法?Python spatial.cKDTree怎麽用?Python spatial.cKDTree使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.spatial
的用法示例。
在下文中一共展示了spatial.cKDTree方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: mi
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import cKDTree [as 別名]
def mi(x, y, k=3, base=2):
"""Mutual information of x and y.
x,y should be a list of vectors, e.g. x = [[1.3], [3.7], [5.1], [2.4]]
if x is a one-dimensional scalar and we have four samples.
"""
assert len(x)==len(y), 'Lists should have same length.'
assert k <= len(x) - 1, 'Set k smaller than num samples - 1.'
intens = 1e-10 # Small noise to break degeneracy, see doc.
x = [list(p + intens*nr.rand(len(x[0]))) for p in x]
y = [list(p + intens*nr.rand(len(y[0]))) for p in y]
points = zip2(x,y)
# Find nearest neighbors in joint space, p=inf means max-norm.
tree = ss.cKDTree(points)
dvec = [tree.query(point, k+1, p=float('inf'))[0][k] for point in points]
a = avgdigamma(x,dvec)
b = avgdigamma(y,dvec)
c = digamma(k)
d = digamma(len(x))
return (-a-b+c+d) / log(base)
示例2: cmi
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import cKDTree [as 別名]
def cmi(x, y, z, k=3, base=2):
"""Mutual information of x and y, conditioned on z
x,y,z should be a list of vectors, e.g. x = [[1.3], [3.7], [5.1], [2.4]]
if x is a one-dimensional scalar and we have four samples
"""
assert len(x)==len(y), 'Lists should have same length.'
assert k <= len(x) - 1, 'Set k smaller than num samples - 1.'
intens = 1e-10 # Small noise to break degeneracy, see doc.
x = [list(p + intens*nr.rand(len(x[0]))) for p in x]
y = [list(p + intens*nr.rand(len(y[0]))) for p in y]
z = [list(p + intens*nr.rand(len(z[0]))) for p in z]
points = zip2(x,y,z)
# Find nearest neighbors in joint space, p=inf means max-norm.
tree = ss.cKDTree(points)
dvec = [tree.query(point, k+1, p=float('inf'))[0][k] for point in points]
a = avgdigamma(zip2(x,z), dvec)
b = avgdigamma(zip2(y,z), dvec)
c = avgdigamma(z,dvec)
d = digamma(k)
return (-a-b+c+d) / log(base)
示例3: kldiv
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import cKDTree [as 別名]
def kldiv(x, xp, k=3, base=2):
"""KL Divergence between p and q for x~p(x),xp~q(x).
x, xp should be a list of vectors, e.g. x = [[1.3],[3.7],[5.1],[2.4]]
if x is a one-dimensional scalar and we have four samples
"""
assert k <= len(x) - 1, 'Set k smaller than num samples - 1.'
assert k <= len(xp) - 1, 'Set k smaller than num samples - 1.'
assert len(x[0]) == len(xp[0]), 'Two distributions must have same dim.'
d = len(x[0])
n = len(x)
m = len(xp)
const = log(m) - log(n-1)
tree = ss.cKDTree(x)
treep = ss.cKDTree(xp)
nn = [tree.query(point, k+1, p=float('inf'))[0][k] for point in x]
nnp = [treep.query(point, k, p=float('inf'))[0][k-1] for point in x]
return (const + d * np.mean(map(log, nnp)) \
- d * np.mean(map(log, nn))) / log(base)
# DISCRETE ESTIMATORS
示例4: evaluate_pbc_fast
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import cKDTree [as 別名]
def evaluate_pbc_fast(self, points):
grid = points
pos = self.pos
box = self.box
d = self.sigma * 2.5
results = np.zeros(grid.shape[1], dtype=float)
gridT = grid[::-1].T[:]
tree = cKDTree(gridT, boxsize=box)
# the indices of grid elements within distane d from each of the pos
scale = 2. * self.sigma**2
indlist = tree.query_ball_point(pos, d)
for n, ind in enumerate(indlist):
dr = gridT[ind, :] - pos[n]
cond = np.where(dr > box / 2.)
dr[cond] -= box[cond[1]]
cond = np.where(dr < -box / 2.)
dr[cond] += box[cond[1]]
dens = np.exp(-np.sum(dr * dr, axis=1) / scale)
results[ind] += dens
return results
示例5: _create_mesh
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import cKDTree [as 別名]
def _create_mesh(self):
""" Mesh assignment method
Based on a target value, determine a mesh size for the testlines
that is compatible with the simulation box.
Create the grid and initialize a cKDTree object with it to
facilitate fast searching of the gridpoints touched by molecules.
"""
box = utilities.get_box(self.universe, self.normal)
n, d = utilities.compute_compatible_mesh_params(self.target_mesh, box)
self.mesh_nx = n[0]
self.mesh_ny = n[1]
self.mesh_dx = d[0]
self.mesh_dy = d[1]
_x = np.linspace(0, box[0], num=int(self.mesh_nx), endpoint=False)
_y = np.linspace(0, box[1], num=int(self.mesh_ny), endpoint=False)
_X, _Y = np.meshgrid(_x, _y)
self.meshpoints = np.array([_X.ravel(), _Y.ravel()]).T
self.meshtree = cKDTree(self.meshpoints, boxsize=box[:2])
示例6: adi
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import cKDTree [as 別名]
def adi(R_est, t_est, R_gt, t_gt, pts):
"""Average Distance of Model Points for objects with indistinguishable views
- by Hinterstoisser et al. (ACCV'12).
:param R_est: 3x3 ndarray with the estimated rotation matrix.
:param t_est: 3x1 ndarray with the estimated translation vector.
:param R_gt: 3x3 ndarray with the ground-truth rotation matrix.
:param t_gt: 3x1 ndarray with the ground-truth translation vector.
:param pts: nx3 ndarray with 3D model points.
:return: The calculated error.
"""
pts_est = misc.transform_pts_Rt(pts, R_est, t_est)
pts_gt = misc.transform_pts_Rt(pts, R_gt, t_gt)
# Calculate distances to the nearest neighbors from vertices in the
# ground-truth pose to vertices in the estimated pose.
nn_index = spatial.cKDTree(pts_est)
nn_dists, _ = nn_index.query(pts_gt, k=1)
e = nn_dists.mean()
return e
示例7: adi
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import cKDTree [as 別名]
def adi(R_est, t_est, R_gt, t_gt, model):
"""
Average Distance of Model Points for objects with indistinguishable views
- by Hinterstoisser et al. (ACCV 2012).
:param R_est, t_est: Estimated pose (3x3 rot. matrix and 3x1 trans. vector).
:param R_gt, t_gt: GT pose (3x3 rot. matrix and 3x1 trans. vector).
:param model: Object model given by a dictionary where item 'pts'
is nx3 ndarray with 3D model points.
:return: Error of pose_est w.r.t. pose_gt.
"""
pts_est = misc.transform_pts_Rt(model['pts'], R_est, t_est)
pts_gt = misc.transform_pts_Rt(model['pts'], R_gt, t_gt)
# Calculate distances to the nearest neighbors from pts_gt to pts_est
nn_index = spatial.cKDTree(pts_est)
nn_dists, _ = nn_index.query(pts_gt, k=1)
e = nn_dists.mean()
return e
示例8: bench_build
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import cKDTree [as 別名]
def bench_build(self):
print()
print(' Constructing kd-tree')
print('=====================================')
print(' dim | # points | KDTree | cKDTree ')
for (m, n, repeat) in [(3,10000,3), (8,10000,3), (16,10000,3)]:
print('%4s | %7s ' % (m, n), end=' ')
sys.stdout.flush()
data = np.concatenate((np.random.randn(n//2,m),
np.random.randn(n-n//2,m)+np.ones(m)))
print('| %6.3fs ' % (measure('T1 = KDTree(data)', repeat) / repeat), end=' ')
sys.stdout.flush()
print('| %6.3fs' % (measure('T2 = cKDTree(data)', repeat) / repeat), end=' ')
sys.stdout.flush()
print('')
示例9: _find_correspondence
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import cKDTree [as 別名]
def _find_correspondence(surf, ref_surf, eps=0, n_jobs=1, use_cell=False):
if use_cell:
points = compute_cell_center(surf)
ref_points = compute_cell_center(ref_surf)
else:
points = get_points(surf)
ref_points = get_points(ref_surf)
tree = cKDTree(ref_points, leafsize=20, compact_nodes=False,
copy_data=False, balanced_tree=False)
d, idx = tree.query(points, k=1, eps=0, n_jobs=n_jobs,
distance_upper_bound=eps+np.finfo(np.float).eps)
if np.isinf(d).any():
raise ValueError('Cannot find correspondences. Try increasing '
'tolerance.')
return idx
示例10: _view_kd
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import cKDTree [as 別名]
def _view_kd(cls, data, data_view, target_view, x_tolerance=1e-3, y_tolerance=1e-3):
"""
Appropriate if:
- Grid is regular
- Data is regular
- Grid and data have same cellsize OR no interpolation is needed
"""
nodata = target_view.nodata
view = np.full(target_view.shape, nodata)
viewrows, viewcols = target_view.grid_indices()
rows, cols = data_view.grid_indices()
ytree = spatial.cKDTree(rows[:, None])
xtree = spatial.cKDTree(cols[:, None])
ydist, y_ix = ytree.query(viewrows[:, None])
xdist, x_ix = xtree.query(viewcols[:, None])
y_passed = ydist < y_tolerance
x_passed = xdist < x_tolerance
view[np.ix_(y_passed, x_passed)] = data[y_ix[y_passed]][:, x_ix[x_passed]]
return view
示例11: _view_kd_2d
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import cKDTree [as 別名]
def _view_kd_2d(cls, data, data_view, target_view, x_tolerance=1e-3, y_tolerance=1e-3):
t_xmin, t_ymin, t_xmax, t_ymax = target_view.bbox
d_xmin, d_ymin, d_xmax, d_ymax = data_view.bbox
nodata = target_view.nodata
view = np.full(target_view.shape, nodata)
yx_tolerance = np.sqrt(x_tolerance**2 + y_tolerance**2)
viewrows, viewcols = target_view.grid_indices()
rows, cols = data_view.grid_indices()
row_bool = (rows <= t_ymax + y_tolerance) & (rows >= t_ymin - y_tolerance)
col_bool = (cols <= t_xmax + x_tolerance) & (cols >= t_xmin - x_tolerance)
yx_tree = np.vstack(np.dstack(np.meshgrid(rows[row_bool], cols[col_bool], indexing='ij')))
yx_query = np.vstack(np.dstack(np.meshgrid(viewrows, viewcols, indexing='ij')))
tree = spatial.cKDTree(yx_tree)
yx_dist, yx_ix = tree.query(yx_query)
yx_passed = yx_dist < yx_tolerance
view.flat[yx_passed] = data[np.ix_(row_bool, col_bool)].flat[yx_ix[yx_passed]]
return view
示例12: adi
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import cKDTree [as 別名]
def adi(pose_est, pose_gt, model):
"""
Average Distance of Model Points for objects with indistinguishable views
- by Hinterstoisser et al. (ACCV 2012).
:param pose_est: Estimated pose given by a dictionary:
{'R': 3x3 rotation matrix, 't': 3x1 translation vector}.
:param pose_gt: The ground truth pose given by a dictionary (as pose_est).
:param model: Object model given by a dictionary where item 'pts'
is nx3 ndarray with 3D model points.
:return: Error of pose_est w.r.t. pose_gt.
"""
pts_gt = misc.transform_pts_Rt(model['pts'], pose_gt['R'], pose_gt['t'])
pts_est = misc.transform_pts_Rt(model['pts'], pose_est['R'], pose_est['t'])
# Calculate distances to the nearest neighbors from pts_gt to pts_est
nn_index = spatial.cKDTree(pts_est)
nn_dists, _ = nn_index.query(pts_gt, k=1)
e = nn_dists.mean()
return e
示例13: test_ridges
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import cKDTree [as 別名]
def test_ridges(self, name):
# Check that the ridges computed by Voronoi indeed separate
# the regions of nearest neighborhood, by comparing the result
# to KDTree.
points = DATASETS[name]
tree = KDTree(points)
vor = qhull.Voronoi(points)
for p, v in vor.ridge_dict.items():
# consider only finite ridges
if not np.all(np.asarray(v) >= 0):
continue
ridge_midpoint = vor.vertices[v].mean(axis=0)
d = 1e-6 * (points[p[0]] - ridge_midpoint)
dist, k = tree.query(ridge_midpoint + d, k=1)
assert_equal(k, p[0])
dist, k = tree.query(ridge_midpoint - d, k=1)
assert_equal(k, p[1])
示例14: test_query_ball_point_multithreading
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import cKDTree [as 別名]
def test_query_ball_point_multithreading():
np.random.seed(0)
n = 5000
k = 2
points = np.random.randn(n,k)
T = cKDTree(points)
l1 = T.query_ball_point(points,0.003,n_jobs=1)
l2 = T.query_ball_point(points,0.003,n_jobs=64)
l3 = T.query_ball_point(points,0.003,n_jobs=-1)
for i in range(n):
if l1[i] or l2[i]:
assert_array_equal(l1[i],l2[i])
for i in range(n):
if l1[i] or l3[i]:
assert_array_equal(l1[i],l3[i])
示例15: setup_method
# 需要導入模塊: from scipy import spatial [as 別名]
# 或者: from scipy.spatial import cKDTree [as 別名]
def setup_method(self):
n = 50
m = 4
np.random.seed(0)
data1 = np.random.randn(n,m)
data2 = np.random.randn(n,m)
self.T1 = cKDTree(data1,leafsize=2)
self.T2 = cKDTree(data2,leafsize=2)
self.ref_T1 = KDTree(data1, leafsize=2)
self.ref_T2 = KDTree(data2, leafsize=2)
self.r = 0.5
self.n = n
self.m = m
self.data1 = data1
self.data2 = data2
self.p = 2