本文整理匯總了Python中scipy.sparse.triu方法的典型用法代碼示例。如果您正苦於以下問題:Python sparse.triu方法的具體用法?Python sparse.triu怎麽用?Python sparse.triu使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.sparse
的用法示例。
在下文中一共展示了sparse.triu方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_upper_triangular_P
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import triu [as 別名]
def test_upper_triangular_P(self):
res_default = self.model.solve()
# Get upper triangular P
P_triu = sparse.triu(self.P, format='csc')
# Setup and solve with upper triangular part only
m = osqp.OSQP()
m.setup(P=P_triu, q=self.q, A=self.A, l=self.l, u=self.u,
**self.opts)
res_triu = m.solve()
# Assert equal
nptest.assert_array_almost_equal(res_default.x, res_triu.x)
nptest.assert_array_almost_equal(res_default.y, res_triu.y)
nptest.assert_array_almost_equal(res_default.info.obj_val,
res_triu.info.obj_val)
示例2: test_hicConvertFormat_hicpro_to_cool
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import triu [as 別名]
def test_hicConvertFormat_hicpro_to_cool():
outfile = NamedTemporaryFile(suffix='.cool', delete=False)
outfile.close()
hicprofile = ROOT + '/test_matrix.hicpro'
bedfile = ROOT + '/test_matrix.bed'
args = "--matrices {} --outFileName {} --inputFormat hicpro --outputFormat cool --bedFileHicpro {}".format(hicprofile, outfile.name, bedfile).split()
hicConvertFormat.main(args)
# test = hm.hiCMatrix(original_matrix_cool)
# print(outfile.name)
new = hm.hiCMatrix(outfile.name)
matrixFileHandlerInput = MatrixFileHandler(pFileType='hicpro', pMatrixFile=hicprofile,
pBedFileHicPro=bedfile)
_matrix, cut_intervals, nan_bins, \
distance_counts, correction_factors = matrixFileHandlerInput.load()
new.matrix = triu(new.matrix)
nt.assert_array_almost_equal(new.matrix.data, _matrix.data, decimal=0)
示例3: get_data
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import triu [as 別名]
def get_data(self, region):
"""Get sparse data for a region
Parameters
----------
region : tuple or str
Region for which to load the data. Either tuple of (chr, start, end), or
string with chromosome name.
Returns
-------
data : csr
Sparse csr matrix for the corresponding region.
"""
logging.debug("Loading data")
data = self.clr.matrix(sparse=True, balance=self.balance).fetch(region)
data = sparse.triu(data)
return data.tocsr()
示例4: baseline_eigencentrality_top_flips
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import triu [as 別名]
def baseline_eigencentrality_top_flips(adj_matrix, candidates, n_flips):
"""Selects the top (n_flips) number of flips using eigencentrality score of the edges.
Applicable only when removing edges.
:param adj_matrix: sp.spmatrix
The graph represented as a sparse scipy matrix
:param candidates: np.ndarray, shape [?, 2]
Candidate set of edge flips
:param n_flips: int
Number of flips to select
:return: np.ndarray, shape [?, 2]
The top edge flips from the candidate set
"""
edges = np.column_stack(sp.triu(adj_matrix, 1).nonzero())
line_graph = construct_line_graph(adj_matrix)
eigcentrality_scores = nx.eigenvector_centrality_numpy(nx.Graph(line_graph))
eigcentrality_scores = {tuple(edges[k]): eigcentrality_scores[k] for k, v in eigcentrality_scores.items()}
eigcentrality_scores = np.array([eigcentrality_scores[tuple(cnd)] for cnd in candidates])
scores_argsrt = eigcentrality_scores.argsort()
return candidates[scores_argsrt[-n_flips:]]
示例5: construct_line_graph
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import triu [as 別名]
def construct_line_graph(adj_matrix):
"""Construct a line graph from an undirected original graph.
Parameters
----------
adj_matrix : sp.spmatrix [n_samples ,n_samples]
Symmetric binary adjacency matrix.
Returns
-------
L : sp.spmatrix, shape [A.nnz/2, A.nnz/2]
Symmetric binary adjacency matrix of the line graph.
"""
N = adj_matrix.shape[0]
edges = np.column_stack(sp.triu(adj_matrix, 1).nonzero())
e1, e2 = edges[:, 0], edges[:, 1]
I = sp.eye(N).tocsr()
E1 = I[e1]
E2 = I[e2]
L = E1.dot(E1.T) + E1.dot(E2.T) + E2.dot(E1.T) + E2.dot(E2.T)
return L - 2 * sp.eye(L.shape[0])
示例6: hamming
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import triu [as 別名]
def hamming(bkps1, bkps2):
"""Modified Hamming distance for partitions.
For all pair of points (x, y), x != y, the functions computes the
number of times the two partitions disagree.
The result is scaled to be within 0 and 1.
Args:
bkps1 (list): list of the last index of each regime.
bkps2 (list): list of the last index of each regime.
Returns:
float: Hamming distance.
"""
sanity_check(bkps1, bkps2)
n_samples = max(bkps1)
disagreement = abs(membership_mat(bkps1) - membership_mat(bkps2))
disagreement = triu(disagreement, k=1).sum() * 1.
disagreement /= n_samples * n_samples / 2 # scaling
return disagreement
示例7: test_warm_start
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import triu [as 別名]
def test_warm_start(self):
# Big problem
sp.random.seed(2)
self.n = 100
self.m = 200
self.A = sparse.random(self.m, self.n, density=0.9, format='csc')
self.l = -sp.rand(self.m) * 2.
self.u = sp.rand(self.m) * 2.
P = sparse.random(self.n, self.n, density=0.9)
self.P = sparse.triu(P.dot(P.T), format='csc')
self.q = sp.randn(self.n)
# Setup solver
self.model = osqp.OSQP()
self.model.setup(P=self.P, q=self.q, A=self.A, l=self.l, u=self.u,
**self.opts)
# Solve problem with OSQP
res = self.model.solve()
# Store optimal values
x_opt = res.x
y_opt = res.y
tot_iter = res.info.iter
# Warm start with zeros and check if number of iterations is the same
self.model.warm_start(x=np.zeros(self.n), y=np.zeros(self.m))
res = self.model.solve()
self.assertEqual(res.info.iter, tot_iter)
# Warm start with optimal values and check that number of iter < 10
self.model.warm_start(x=x_opt, y=y_opt)
res = self.model.solve()
self.assertLess(res.info.iter, 10)
示例8: setUp
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import triu [as 別名]
def setUp(self):
# Simple QP problem
sp.random.seed(1)
self.n = 5
self.m = 8
p = 0.7
Pt = sparse.random(self.n, self.n, density=p)
Pt_new = Pt.copy()
Pt_new.data += 0.1 * np.random.randn(Pt.nnz)
self.P = sparse.triu(Pt.T.dot(Pt) + sparse.eye(self.n), format='csc')
self.P_new = sparse.triu(Pt_new.T.dot(Pt_new) + sparse.eye(self.n), format='csc')
self.q = np.random.randn(self.n)
self.A = sparse.random(self.m, self.n, density=p, format='csc')
self.A_new = self.A.copy()
self.A_new.data += np.random.randn(self.A_new.nnz)
self.l = np.zeros(self.m)
self.u = 30 + np.random.randn(self.m)
self.opts = {'eps_abs': 1e-08,
'eps_rel': 1e-08,
'verbose': False}
self.model = osqp.OSQP()
self.model.setup(P=self.P, q=self.q, A=self.A, l=self.l, u=self.u,
**self.opts)
示例9: setUp
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import triu [as 別名]
def setUp(self):
# Simple QP problem
self.P = sparse.triu([[2., 5.], [5., 1.]], format='csc')
self.q = np.array([3, 4])
self.A = sparse.csc_matrix([[-1.0, 0.], [0., -1.],
[-1., 3.], [2., 5.], [3., 4]])
self.u = np.array([0., 0., -15, 100, 80])
self.l = -np.inf * np.ones(len(self.u))
self.model = osqp.OSQP()
示例10: test_polish_random
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import triu [as 別名]
def test_polish_random(self):
# Random QP problem
sp.random.seed(6)
self.n = 30
self.m = 50
Pt = sp.randn(self.n, self.n)
self.P = sparse.triu(np.dot(Pt.T, Pt), format='csc')
self.q = sp.randn(self.n)
self.A = sparse.csc_matrix(sp.randn(self.m, self.n))
self.l = -3 + sp.randn(self.m)
self.u = 3 + sp.randn(self.m)
self.model = osqp.OSQP()
self.model.setup(P=self.P, q=self.q, A=self.A, l=self.l, u=self.u,
**self.opts)
# Solve problem
res = self.model.solve()
# Assert close
nptest.assert_array_almost_equal(
res.x, np.array([
-0.58549607, 0.0030388, -0.07154039, -0.0406463, -0.13349925,
-0.1354755, -0.17417362, 0.0165324, -0.12213118, -0.10477034,
-0.51748662, -0.05310921, 0.07862616, 0.53663003, -0.01459859,
0.40678716, -0.03496123, 0.25722838, 0.06335071, 0.29908295,
-0.6223218, -0.07614658, -0.3892153, -0.18111635, 0.56301768,
0.10429917, 0.09821862, -0.30881928, 0.24430531, 0.06597486]))
nptest.assert_array_almost_equal(
res.y, np.array([
0., -2.11407101e-01, 0., 0., 0., 0., 0., 0., 0.,
0., -3.78854588e-02, 0., -1.58346998e-02, 0., 0.,
-6.88711599e-02, 0., 0., 0., 0., 0., 0., 0., 0.,
6.04385132e-01, 0., 0., 0., 0., 0., 0., 0., 0.,
0., 1.37995470e-01, 0., 0., 0., -2.04427802e-02,
0., -1.32983915e-01, 0., 2.94425952e-02, 0., 0.,
0., 0., 0., -6.53409219e-02, 0.]))
nptest.assert_array_almost_equal(res.info.obj_val, -3.262280663471232)
示例11: get_edges
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import triu [as 別名]
def get_edges(surf, mask=None):
"""Get surface edges.
Parameters
----------
surf : vtkDataSet or BSDataSet
Input surface.
mask : 1D ndarray, optional
Binary mask. If specified, only use points within the mask.
Default is None.
Returns
-------
edges : ndarray, shape (n_edges, 2)
Array of edges. Each element is a point id.
See Also
--------
:func:`get_edge_length`
:func:`get_points`
:func:`get_cells`
"""
adj = get_immediate_adjacency(surf, include_self=False, mask=mask,
dtype=np.bool)
adj.sort_indices()
adj_ud = ssp.triu(adj, k=1, format='coo')
edges = np.column_stack([adj_ud.row, adj_ud.col])
return edges
示例12: _symmetric_matrix
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import triu [as 別名]
def _symmetric_matrix(mat: dok_matrix) -> dok_matrix:
upper = triu(mat, 1, format='dok') / 2
# `todok` is necessary because subtraction results in other format
return (mat + upper.transpose() - upper).todok()
示例13: omega_index
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import triu [as 別名]
def omega_index(clustering1, clustering2):
'''
This function calculates the omega index between two clusterings.
See :cite:`Collins1988omega` for a detailed derivation and explanation of the measure.
:param Clustering clustering1:
The first clustering.
:param Clustering clustering2:
The second clustering.
:returns: the omega index
'''
if clustering1.n_elements != clustering2.n_elements:
raise ClusteringSimilarityError
elif any(e1 != e2 for e1, e2 in zip(clustering1.elements, clustering2.elements)):
raise ClusteringSimilarityError
A1 = make_overlapping_membership_matrix(clustering1)
A2 = make_overlapping_membership_matrix(clustering2)
M = clustering1.n_elements * (clustering1.n_elements - 1) / 2.0
maxNover = max(max(A1.diagonal()), max(A2.diagonal())) + 1
Anot = spsparse.triu((A1 != A2), k=1).sum()
omega_u = 1.0 - Anot.sum() / M
t_0_1 = M - spsparse.triu((A1 != 0), k=1).sum()
t_0_2 = M - spsparse.triu((A2 != 0), k=1).sum()
t_k_1 = [spsparse.triu((A1 == i), k=1).sum() for i in range(1, maxNover)]
t_k_2 = [spsparse.triu((A2 == i), k=1).sum() for i in range(1, maxNover)]
omega_e = (t_0_1*t_0_2 + np.dot(t_k_1, t_k_2)) / M**2
return (omega_u - omega_e) / (1.0 - omega_e)
示例14: test_triul
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import triu [as 別名]
def test_triul(shape, k):
s = sparse.random(shape, density=0.5)
x = s.todense()
assert_eq(np.triu(x, k), sparse.triu(s, k))
assert_eq(np.tril(x, k), sparse.tril(s, k))
示例15: triu
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import triu [as 別名]
def triu(x, k=0):
"""
Returns an array with all elements below the k-th diagonal set to zero.
Parameters
----------
x : COO
The input array.
k : int, optional
The diagonal below which elements are set to zero. The default is
zero, which corresponds to the main diagonal.
Returns
-------
COO
The output upper-triangular matrix.
Raises
------
ValueError
If :code:`x` doesn't have zero fill-values.
See Also
--------
numpy.triu : NumPy equivalent function
"""
from .core import COO
check_zero_fill_value(x)
if not x.ndim >= 2:
raise NotImplementedError(
"sparse.triu is not implemented for scalars or 1-D arrays."
)
mask = x.coords[-2] + k <= x.coords[-1]
coords = x.coords[:, mask]
data = x.data[mask]
return COO(coords, data, shape=x.shape, has_duplicates=False, sorted=True)