本文整理匯總了Python中scipy.sparse.spdiags方法的典型用法代碼示例。如果您正苦於以下問題:Python sparse.spdiags方法的具體用法?Python sparse.spdiags怎麽用?Python sparse.spdiags使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.sparse
的用法示例。
在下文中一共展示了sparse.spdiags方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_term_topic
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import spdiags [as 別名]
def get_term_topic(self, X):
n_features = X.shape[1]
id2word = self.vocabulary_
word2topic = {}
with open('word_topic.txt', 'r') as f:
for line in f:
strs = line.decode('utf-8').strip('\n').split('\t')
word2topic[strs[0]] = strs[2]
topic = np.zeros((len(id2word),))
for i, key in enumerate(id2word):
if key in word2topic:
topic[id2word[key]] = word2topic[key]
else:
print key
topic = preprocessing.MinMaxScaler().fit_transform(topic)
# topic = sp.spdiags(topic, diags=0, m=n_features,
# n=n_features, format='csr')
return topic
示例2: setUp
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import spdiags [as 別名]
def setUp(self):
random.seed(0) # make tests repeatable
self.real_matrices = []
self.real_matrices.append(spdiags([[1, 2, 3, 4, 5], [6, 5, 8, 9, 10]],
[0, 1], 5, 5))
self.real_matrices.append(spdiags([[1, 2, 3, 4, 5], [6, 5, 8, 9, 10]],
[0, 1], 4, 5))
self.real_matrices.append(spdiags([[1, 2, 3, 4, 5], [6, 5, 8, 9, 10]],
[0, 2], 5, 5))
self.real_matrices.append(rand(3,3))
self.real_matrices.append(rand(5,4))
self.real_matrices.append(rand(4,5))
self.real_matrices = [csc_matrix(x).astype('d') for x
in self.real_matrices]
self.complex_matrices = [x.astype(np.complex128)
for x in self.real_matrices]
_DeprecationAccept.setUp(self)
# Skip methods if umfpack not present
示例3: test_twodiags
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import spdiags [as 別名]
def test_twodiags(self):
A = spdiags([[1, 2, 3, 4, 5], [6, 5, 8, 9, 10]], [0, 1], 5, 5)
b = array([1, 2, 3, 4, 5])
# condition number of A
cond_A = norm(A.todense(),2) * norm(inv(A.todense()),2)
for t in ['f','d','F','D']:
eps = finfo(t).eps # floating point epsilon
b = b.astype(t)
for format in ['csc','csr']:
Asp = A.astype(t).asformat(format)
x = spsolve(Asp,b)
assert_(norm(b - Asp*x) < 10 * cond_A * eps)
示例4: sakurai
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import spdiags [as 別名]
def sakurai(n):
""" Example taken from
T. Sakurai, H. Tadano, Y. Inadomi and U. Nagashima
A moment-based method for large-scale generalized eigenvalue problems
Appl. Num. Anal. Comp. Math. Vol. 1 No. 2 (2004) """
A = sparse.eye(n, n)
d0 = array(r_[5,6*ones(n-2),5])
d1 = -4*ones(n)
d2 = ones(n)
B = sparse.spdiags([d2,d1,d0,d1,d2],[-2,-1,0,1,2],n,n)
k = arange(1,n+1)
w_ex = sort(1./(16.*pow(cos(0.5*k*pi/(n+1)),4))) # exact eigenvalues
return A,B, w_ex
示例5: expansion_matrix
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import spdiags [as 別名]
def expansion_matrix(mapping, canonical_order=False):
""" Returns an n x m matrix E where n is the dimension of
the original data and m is the dimension of the reduced data.
Expands data vector x with E x'
Reduces workload matrix W with W E
"""
assert mapping.ndim == 1, "Can only handle 1-dimesional mappings for now, domain should be flattened"
unique, indices, inverse, counts = mapping_statistics(mapping)
if canonical_order:
mapping = canonical_ordering(mapping)
n = mapping.size
m = unique.size
data = np.ones(n)
cols = np.arange(n)
rows = inverse
R = sparse.csr_matrix((data, (rows, cols)), shape=(m, n), dtype=int)
scale = sparse.spdiags(1.0 /counts, 0, m, m)
return EkteloMatrix(R.T * scale)
示例6: _setup_metric
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import spdiags [as 別名]
def _setup_metric(X, true_labels, inv_psp=None, k=5):
assert compatible_shapes(X, true_labels), \
"ground truth and prediction matrices must have same shape."
num_instances, num_labels = true_labels.shape
indices = _get_topk(X, num_labels, k)
ps_indices = None
if inv_psp is not None:
ps_indices = _get_topk(
true_labels.dot(
sp.spdiags(inv_psp, diags=0,
m=num_labels, n=num_labels)),
num_labels, k)
inv_psp = np.hstack([inv_psp, np.zeros((1))])
true_labels = sp.hstack([true_labels,
sp.lil_matrix((num_instances, 1),
dtype=np.int32)]).tocsr()
return indices, true_labels, ps_indices, inv_psp
示例7: compute_laplacian_sparse
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import spdiags [as 別名]
def compute_laplacian_sparse(W):
num_node = W.shape[0]
D = np.sum(W, axis=0).A1
# unnormalized graph laplacian
# L = np.diag(D) - W
# normalized graph laplacian
idx = D != 0
diag_vec = np.zeros_like(D)
diag_vec[idx] = 1.0
row = np.nonzero(D)[0]
col = row
diag_val = csr_matrix(
(diag_vec, (row, col)), shape=[num_node, num_node], dtype=np.float32)
D_inv = np.zeros_like(D)
D_inv[idx] = 1.0 / D[idx]
L = diag_val - spdiags(D_inv, 0, num_node, num_node) * W
return L
開發者ID:microsoft,項目名稱:graph-partition-neural-network-samples,代碼行數:26,代碼來源:spectral_graph_partition.py
示例8: setUp
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import spdiags [as 別名]
def setUp(self):
random.seed(0) # make tests repeatable
real_matrices = []
real_matrices.append(spdiags([[1, 2, 3, 4, 5], [6, 5, 8, 9, 10]],
[0, 1], 5, 5))
real_matrices.append(spdiags([[1, 2, 3, 4, 5], [6, 5, 8, 9, 10]],
[0, 1], 4, 5))
real_matrices.append(spdiags([[1, 2, 3, 4, 5], [6, 5, 8, 9, 10]],
[0, 2], 5, 5))
real_matrices.append(rand(3,3))
real_matrices.append(rand(5,4))
real_matrices.append(rand(4,5))
self.real_matrices = [csc_matrix(x).astype('d')
for x in real_matrices]
self.complex_matrices = [x.astype(np.complex128)
for x in self.real_matrices]
self.real_int64_matrices = [_to_int64(x)
for x in self.real_matrices]
self.complex_int64_matrices = [_to_int64(x)
for x in self.complex_matrices]
_DeprecationAccept.setUp(self)
示例9: _baseline_als
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import spdiags [as 別名]
def _baseline_als(self,y, lam, p, niter=10):
'''
see http://zanran_storage.s3.amazonaws.com/www.science.uva.nl/ContentPages/443199618.pdf
"Asymmetric Least Squares Smoothing" by P. Eilers and H. Boelens in 2005.
http://stackoverflow.com/questions/29156532/python-baseline-correction-library
"There are two parameters: p for asymmetry and lambda for smoothness. Both have to be
tuned to the data at hand. We found that generally 0.001<=p<=0.1 is a good choice
(for a signal with positive peaks) and 10e2<=lambda<=10e9, but exceptions may occur."
'''
L = len(y)
D = sparse.csc_matrix(np.diff(np.eye(L), 2))
w = np.ones(L)
for i in xrange(niter):
W = sparse.spdiags(w, 0, L, L)
Z = W + lam * D.dot(D.transpose())
z = sparse.linalg.spsolve(Z, w*y)
w = p * (y > z) + (1-p) * (y < z)
return z
示例10: fit
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import spdiags [as 別名]
def fit(self, X, y=None):
"""Learn the idf vector (global term weights)
Parameters
----------
X : sparse matrix, [n_samples, n_features]
a matrix of term/token counts
"""
if not sp.issparse(X):
X = sp.csc_matrix(X)
if self.use_idf:
n_samples, n_features = X.shape
df = _document_frequency(X)
# perform idf smoothing if required
df += int(self.smooth_idf)
n_samples += int(self.smooth_idf)
# log+1 instead of log makes sure terms with zero idf don't get
# suppressed entirely.
idf = np.log(float(n_samples) / df) + 1.0
self._idf_diag = sp.spdiags(idf, diags=0, m=n_features,
n=n_features, format='csr')
return self
示例11: train
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import spdiags [as 別名]
def train(self, contexts, responses):
"""Fit the tf-idf transform and compute idf statistics."""
with ignore_warnings():
# Ignore deprecated `non_negative` warning.
self._vectorizer = HashingVectorizer(non_negative=True)
self._tfidf_transform = TfidfTransformer()
count_matrix = self._tfidf_transform.fit_transform(
self._vectorizer.transform(contexts + responses))
n_samples, n_features = count_matrix.shape
df = _document_frequency(count_matrix)
idf = np.log((n_samples - df + 0.5) / (df + 0.5))
self._idf_diag = sp.spdiags(
idf, diags=0, m=n_features, n=n_features
)
document_lengths = count_matrix.sum(axis=1)
self._average_document_length = np.mean(document_lengths)
print(self._average_document_length)
示例12: __init__
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import spdiags [as 別名]
def __init__(self, verts, tris, m=1.0):
self._verts = verts
self._tris = tris
# precompute some stuff needed later on
e01 = verts[tris[:,1]] - verts[tris[:,0]]
e12 = verts[tris[:,2]] - verts[tris[:,1]]
e20 = verts[tris[:,0]] - verts[tris[:,2]]
self._triangle_area = .5 * veclen(np.cross(e01, e12))
unit_normal = normalized(np.cross(normalized(e01), normalized(e12)))
self._un = unit_normal
self._unit_normal_cross_e01 = np.cross(unit_normal, -e01)
self._unit_normal_cross_e12 = np.cross(unit_normal, -e12)
self._unit_normal_cross_e20 = np.cross(unit_normal, -e20)
# parameters for heat method
h = np.mean(map(veclen, [e01, e12, e20]))
t = m * h ** 2
# pre-factorize poisson systems
Lc, vertex_area = compute_mesh_laplacian(verts, tris, area_type='lumped_mass')
A = sparse.spdiags(vertex_area, 0, len(verts), len(verts))
#self._factored_AtLc = splu((A - t * Lc).tocsc()).solve
self._factored_AtLc = factorized((A - t * Lc).tocsc())
#self._factored_L = splu(Lc.tocsc()).solve
self._factored_L = factorized(Lc.tocsc())
示例13: manifold_harmonics
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import spdiags [as 別名]
def manifold_harmonics(verts, tris, K, scaled=True, return_D=False, return_eigenvalues=False):
Q, vertex_area = compute_mesh_laplacian(
verts, tris, 'cotangent',
return_vertex_area=True, area_type='lumped_mass'
)
if scaled:
D = sparse.spdiags(vertex_area, 0, len(verts), len(verts))
else:
D = sparse.spdiags(np.ones_like(vertex_area), 0, len(verts), len(verts))
try:
lambda_dense, Phi_dense = eigsh(-Q, M=D, k=K, sigma=0)
except RuntimeError, e:
if e.message == 'Factor is exactly singular':
logging.warn("factor is singular, trying some regularization and cholmod")
chol_solve = factorized(-Q + sparse.eye(Q.shape[0]) * 1.e-9)
OPinv = sparse.linalg.LinearOperator(Q.shape, matvec=chol_solve)
lambda_dense, Phi_dense = eigsh(-Q, M=D, k=K, sigma=0, OPinv=OPinv)
else:
raise e
示例14: transform
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import spdiags [as 別名]
def transform(self, X):
tp = self._tp
fp = self._fp
fn = self._fn
tn = self._tn
f = self._n_features
tpr = tp / self._p
fpr = fp / self._n
min_bound, max_bound = 0.0005, 1 - 0.0005
tpr[tpr < min_bound] = min_bound
tpr[tpr > max_bound] = max_bound
fpr[fpr < min_bound] = min_bound
fpr[fpr > max_bound] = max_bound
k = np.abs(norm.ppf(tpr) - norm.ppf(fpr))
X = X * sp.spdiags(k, 0, f, f)
if self.norm:
X = normalize(X, self.norm, copy=False)
return X
示例15: fit
# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import spdiags [as 別名]
def fit(self, X, y=None):
"""Learn the idf vector (global term weights)
Parameters
----------
X : sparse matrix, [n_samples, n_features]
a matrix of term/token counts
"""
if not sp.issparse(X):
X = sp.csc_matrix(X)
if self.use_idf:
n_samples, n_features = X.shape
n_samples=float(n_samples)
df = _document_frequency(X)
# log+1 instead of log makes sure terms with zero idf don't get
# suppressed entirely.
# idf = np.log(df / n_samples)
idf = old_div(df, n_samples)
self._idf_diag = sp.spdiags(idf,
diags=0, m=n_features, n=n_features)
return self