當前位置: 首頁>>代碼示例>>Python>>正文


Python sparse.random方法代碼示例

本文整理匯總了Python中scipy.sparse.random方法的典型用法代碼示例。如果您正苦於以下問題:Python sparse.random方法的具體用法?Python sparse.random怎麽用?Python sparse.random使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.sparse的用法示例。


在下文中一共展示了sparse.random方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_0201_sparse_matmul

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import random [as 別名]
def test_0201_sparse_matmul(self):
    """ The testbed for checking different ways of invoking matrix-matrix multiplications """

    return
    
    for n in [50, 100, 200, 400, 800, 1600, 3200]:
      print()
      for dens in [0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128, 0.256]:
      
        asp = sprs.random(n, n, format='csr', density=dens)
        bsp = sprs.random(n, n, format='csr', density=dens)

        t1 = timer()
        cmat1 = np.dot(asp, bsp)
        t2 = timer(); ts =t2-t1; #print('runtime sparse ', ts)

    
        adn = asp.toarray()
        bdn = bsp.toarray()
        t1 = t2
        cmat2 = np.dot(adn, bdn)
        t2 = timer(); td =t2-t1; #print('runtime  dense ', td) 
        t1 = t2
    
        print('dens, ratio {:5d}, {:.6f} {:.6f} {:.6f} {:.6f}'.format(n, dens, td, ts, td/ts)) 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:27,代碼來源:test_0201_sparse_matmul.py

示例2: build_dataset

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import random [as 別名]
def build_dataset(n_samples=50, n_features=200, n_targets=1, sparse_X=False):
    """Build samples and observation for linear regression problem."""
    random_state = np.random.RandomState(0)
    if n_targets > 1:
        w = random_state.randn(n_features, n_targets)
    else:
        w = random_state.randn(n_features)

    if sparse_X:
        X = sparse.random(n_samples, n_features, density=0.5, format='csc',
                          random_state=random_state)

    else:
        X = np.asfortranarray(random_state.randn(n_samples, n_features))

    y = X.dot(w)
    return X, y 
開發者ID:mathurinm,項目名稱:celer,代碼行數:19,代碼來源:testing.py

示例3: testCopytoExecution

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import random [as 別名]
def testCopytoExecution(self):
        a = ones((2, 3), chunk_size=1)
        b = tensor([3, -1, 3], chunk_size=2)

        copyto(a, b, where=b > 1)

        res = self.executor.execute_tensor(a, concat=True)[0]
        expected = np.array([[3, 1, 3], [3, 1, 3]])

        np.testing.assert_equal(res, expected)

        a = ones((2, 3), chunk_size=1)
        b = tensor(np.asfortranarray(np.random.rand(2, 3)), chunk_size=2)

        copyto(b, a)

        res = self.executor.execute_tensor(b, concat=True)[0]
        expected = np.asfortranarray(np.ones((2, 3)))

        np.testing.assert_array_equal(res, expected)
        self.assertTrue(res.flags['F_CONTIGUOUS'])
        self.assertFalse(res.flags['C_CONTIGUOUS']) 
開發者ID:mars-project,項目名稱:mars,代碼行數:24,代碼來源:test_base_execute.py

示例4: testAstypeExecution

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import random [as 別名]
def testAstypeExecution(self):
        raw = np.random.random((10, 5))
        arr = tensor(raw, chunk_size=3)
        arr2 = arr.astype('i8')

        res = self.executor.execute_tensor(arr2, concat=True)
        np.testing.assert_array_equal(res[0], raw.astype('i8'))

        raw = sps.random(10, 5, density=.2)
        arr = tensor(raw, chunk_size=3)
        arr2 = arr.astype('i8')

        res = self.executor.execute_tensor(arr2, concat=True)
        self.assertTrue(np.array_equal(res[0].toarray(), raw.astype('i8').toarray()))

        raw = np.asfortranarray(np.random.random((10, 5)))
        arr = tensor(raw, chunk_size=3)
        arr2 = arr.astype('i8', order='C')

        res = self.executor.execute_tensor(arr2, concat=True)[0]
        np.testing.assert_array_equal(res, raw.astype('i8'))
        self.assertTrue(res.flags['C_CONTIGUOUS'])
        self.assertFalse(res.flags['F_CONTIGUOUS']) 
開發者ID:mars-project,項目名稱:mars,代碼行數:25,代碼來源:test_base_execute.py

示例5: testWhereExecution

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import random [as 別名]
def testWhereExecution(self):
        raw_cond = np.random.randint(0, 2, size=(4, 4), dtype='?')
        raw_x = np.random.rand(4, 1)
        raw_y = np.random.rand(4, 4)

        cond, x, y = tensor(raw_cond, chunk_size=2), tensor(raw_x, chunk_size=2), tensor(raw_y, chunk_size=2)

        arr = where(cond, x, y)
        res = self.executor.execute_tensor(arr, concat=True)
        self.assertTrue(np.array_equal(res[0], np.where(raw_cond, raw_x, raw_y)))

        raw_cond = sps.csr_matrix(np.random.randint(0, 2, size=(4, 4), dtype='?'))
        raw_x = sps.random(4, 1, density=.1)
        raw_y = sps.random(4, 4, density=.1)

        cond, x, y = tensor(raw_cond, chunk_size=2), tensor(raw_x, chunk_size=2), tensor(raw_y, chunk_size=2)

        arr = where(cond, x, y)
        res = self.executor.execute_tensor(arr, concat=True)[0]
        self.assertTrue(np.array_equal(res.toarray(),
                                       np.where(raw_cond.toarray(), raw_x.toarray(), raw_y.toarray()))) 
開發者ID:mars-project,項目名稱:mars,代碼行數:23,代碼來源:test_base_execute.py

示例6: testArgwhereExecution

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import random [as 別名]
def testArgwhereExecution(self):
        x = arange(6, chunk_size=2).reshape(2, 3)
        t = argwhere(x > 1)

        res = self.executor.execute_tensor(t, concat=True)[0]
        expected = np.argwhere(np.arange(6).reshape(2, 3) > 1)

        np.testing.assert_array_equal(res, expected)

        data = np.asfortranarray(np.random.rand(10, 20))
        x = tensor(data, chunk_size=10)

        t = argwhere(x > 0.5)

        res = self.executor.execute_tensor(t, concat=True)[0]
        expected = np.argwhere(data > 0.5)

        np.testing.assert_array_equal(res, expected)
        self.assertTrue(res.flags['F_CONTIGUOUS'])
        self.assertFalse(res.flags['C_CONTIGUOUS']) 
開發者ID:mars-project,項目名稱:mars,代碼行數:22,代碼來源:test_base_execute.py

示例7: testSortIndicesExecution

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import random [as 別名]
def testSortIndicesExecution(self):
        # only 1 chunk when axis = -1
        raw = np.random.rand(100, 10)
        x = tensor(raw, chunk_size=10)

        r = sort(x, return_index=True)

        sr, si = self.executor.execute_tensors(r)
        np.testing.assert_array_equal(sr, np.take_along_axis(raw, si, axis=-1))

        x = tensor(raw, chunk_size=(22, 4))

        r = sort(x, return_index=True)

        sr, si = self.executor.execute_tensors(r)
        np.testing.assert_array_equal(sr, np.take_along_axis(raw, si, axis=-1))

        raw = np.random.rand(100)

        x = tensor(raw, chunk_size=23)

        r = sort(x, axis=0, return_index=True)

        sr, si = self.executor.execute_tensors(r)
        np.testing.assert_array_equal(sr, raw[si]) 
開發者ID:mars-project,項目名稱:mars,代碼行數:27,代碼來源:test_base_execute.py

示例8: testArgsort

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import random [as 別名]
def testArgsort(self):
        # only 1 chunk when axis = -1
        raw = np.random.rand(100, 10)
        x = tensor(raw, chunk_size=10)

        xa = argsort(x)

        r = self.executor.execute_tensor(xa, concat=True)[0]
        np.testing.assert_array_equal(np.sort(raw), np.take_along_axis(raw, r, axis=-1))

        x = tensor(raw, chunk_size=(22, 4))

        xa = argsort(x)

        r = self.executor.execute_tensor(xa, concat=True)[0]
        np.testing.assert_array_equal(np.sort(raw), np.take_along_axis(raw, r, axis=-1))

        raw = np.random.rand(100)

        x = tensor(raw, chunk_size=23)

        xa = argsort(x, axis=0)

        r = self.executor.execute_tensor(xa, concat=True)[0]
        np.testing.assert_array_equal(np.sort(raw, axis=0), raw[r]) 
開發者ID:mars-project,項目名稱:mars,代碼行數:27,代碼來源:test_base_execute.py

示例9: testShape

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import random [as 別名]
def testShape(self):
        raw = np.random.RandomState(0).rand(4, 3)
        x = mt.tensor(raw, chunk_size=2)

        s = shape(x)

        ctx, executor = self._create_test_context(self.executor)
        with ctx:
            result = executor.execute_tensors(s)
            self.assertSequenceEqual(result, (4, 3))

            s = shape(x[x > .5])

            result = executor.execute_tensors(s)
            expected = np.shape(raw[raw > .5])
            self.assertSequenceEqual(result, expected)

            s = shape(0)

            result = executor.execute_tensors(s)
            expected = np.shape(0)
            self.assertSequenceEqual(result, expected) 
開發者ID:mars-project,項目名稱:mars,代碼行數:24,代碼來源:test_base_execute.py

示例10: testTakeExecution

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import random [as 別名]
def testTakeExecution(self):
        data = np.random.rand(10, 20, 30)
        t = tensor(data, chunk_size=10)

        a = t.take([4, 1, 2, 6, 200])

        res = self.executor.execute_tensor(a, concat=True)[0]
        expected = np.take(data, [4, 1, 2, 6, 200])
        np.testing.assert_array_equal(res, expected)

        a = take(t, [5, 19, 2, 13], axis=1)

        res = self.executor.execute_tensor(a, concat=True)[0]
        expected = np.take(data, [5, 19, 2, 13], axis=1)
        np.testing.assert_array_equal(res, expected)

        with self.assertRaises(ValueError):
            take(t, [1, 3, 4], out=tensor(np.random.rand(4)))

        out = tensor([1, 2, 3, 4])
        a = take(t, [4, 19, 2, 8], out=out)

        res = self.executor.execute_tensor(out, concat=True)[0]
        expected = np.take(data, [4, 19, 2, 8])
        np.testing.assert_array_equal(res, expected) 
開發者ID:mars-project,項目名稱:mars,代碼行數:27,代碼來源:test_indexing_execute.py

示例11: testHStackExecution

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import random [as 別名]
def testHStackExecution(self):
        a_data = np.random.rand(10)
        b_data = np.random.rand(20)

        a = tensor(a_data, chunk_size=4)
        b = tensor(b_data, chunk_size=4)

        c = hstack([a, b])
        res = self.executor.execute_tensor(c, concat=True)[0]
        expected = np.hstack([a_data, b_data])
        self.assertTrue(np.array_equal(res, expected))

        a_data = np.random.rand(10, 20)
        b_data = np.random.rand(10, 5)

        a = tensor(a_data, chunk_size=3)
        b = tensor(b_data, chunk_size=4)

        c = hstack([a, b])
        res = self.executor.execute_tensor(c, concat=True)[0]
        expected = np.hstack([a_data, b_data])
        self.assertTrue(np.array_equal(res, expected)) 
開發者ID:mars-project,項目名稱:mars,代碼行數:24,代碼來源:test_merge_execute.py

示例12: testVStackExecution

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import random [as 別名]
def testVStackExecution(self):
        a_data = np.random.rand(10)
        b_data = np.random.rand(10)

        a = tensor(a_data, chunk_size=4)
        b = tensor(b_data, chunk_size=4)

        c = vstack([a, b])
        res = self.executor.execute_tensor(c, concat=True)[0]
        expected = np.vstack([a_data, b_data])
        self.assertTrue(np.array_equal(res, expected))

        a_data = np.random.rand(10, 20)
        b_data = np.random.rand(5, 20)

        a = tensor(a_data, chunk_size=3)
        b = tensor(b_data, chunk_size=4)

        c = vstack([a, b])
        res = self.executor.execute_tensor(c, concat=True)[0]
        expected = np.vstack([a_data, b_data])
        self.assertTrue(np.array_equal(res, expected)) 
開發者ID:mars-project,項目名稱:mars,代碼行數:24,代碼來源:test_merge_execute.py

示例13: testDStackExecution

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import random [as 別名]
def testDStackExecution(self):
        a_data = np.random.rand(10)
        b_data = np.random.rand(10)

        a = tensor(a_data, chunk_size=4)
        b = tensor(b_data, chunk_size=4)

        c = dstack([a, b])
        res = self.executor.execute_tensor(c, concat=True)[0]
        expected = np.dstack([a_data, b_data])
        self.assertTrue(np.array_equal(res, expected))

        a_data = np.random.rand(10, 20)
        b_data = np.random.rand(10, 20)

        a = tensor(a_data, chunk_size=3)
        b = tensor(b_data, chunk_size=4)

        c = dstack([a, b])
        res = self.executor.execute_tensor(c, concat=True)[0]
        expected = np.dstack([a_data, b_data])
        self.assertTrue(np.array_equal(res, expected)) 
開發者ID:mars-project,項目名稱:mars,代碼行數:24,代碼來源:test_merge_execute.py

示例14: testColumnStackExecution

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import random [as 別名]
def testColumnStackExecution(self):
        a_data = np.array((1, 2, 3))
        b_data = np.array((2, 3, 4))
        a = tensor(a_data, chunk_size=1)
        b = tensor(b_data, chunk_size=2)

        c = column_stack((a, b))
        res = self.executor.execute_tensor(c, concat=True)[0]
        expected = np.column_stack((a_data, b_data))
        np.testing.assert_equal(res, expected)

        a_data = np.random.rand(4, 2, 3)
        b_data = np.random.rand(4, 2, 3)
        a = tensor(a_data, chunk_size=1)
        b = tensor(b_data, chunk_size=2)

        c = column_stack((a, b))
        res = self.executor.execute_tensor(c, concat=True)[0]
        expected = np.column_stack((a_data, b_data))
        np.testing.assert_equal(res, expected) 
開發者ID:mars-project,項目名稱:mars,代碼行數:22,代碼來源:test_merge_execute.py

示例15: testAllAnyExecution

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import random [as 別名]
def testAllAnyExecution(self):
        raw1 = np.zeros((10, 15))
        raw2 = np.ones((10, 15))
        raw3 = np.array([[True, False, True, False], [True, True, True, True],
                         [False, False, False, False], [False, True, False, True]])

        arr1 = tensor(raw1, chunk_size=3)
        arr2 = tensor(raw2, chunk_size=3)
        arr3 = tensor(raw3, chunk_size=4)

        self.assertFalse(self.executor.execute_tensor(arr1.all())[0])
        self.assertTrue(self.executor.execute_tensor(arr2.all())[0])
        self.assertFalse(self.executor.execute_tensor(arr1.any())[0])
        self.assertTrue(self.executor.execute_tensor(arr1.any()))
        np.testing.assert_array_equal(raw3.all(axis=1),
                                      self.executor.execute_tensor(arr3.all(axis=1))[0])
        np.testing.assert_array_equal(raw3.any(axis=0),
                                      self.executor.execute_tensor(arr3.any(axis=0))[0])

        raw = sps.random(10, 10, density=.5) > .5

        arr = tensor(raw, chunk_size=3)

        self.assertEqual(raw.A.all(), self.executor.execute_tensor(arr.all())[0])
        self.assertEqual(raw.A.any(), self.executor.execute_tensor(arr.any())[0]) 
開發者ID:mars-project,項目名稱:mars,代碼行數:27,代碼來源:test_reduction_execute.py


注:本文中的scipy.sparse.random方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。